DiTile-DGNN: An Efficient Accelerator for Distributed Dynamic
Graph Neural Network Inference

Jiaqi Yang
The George Washington University
Washington DC, USA
Yang_Jiaqi_Cute@gwu.edu

Abstract

Dynamic Graph Neural Networks (DGNNs) have recently emerged
as a promising model for learning complex temporal and spatial
relationships in evolving graphs. The performance of DGNNs is
enabled by the simultaneous integration of both graph neural net-
works (GNNSs) and recurrent neural networks (RNNs). Despite the
theoretical advancements, the design space of such complex mod-
els has significantly exploded due to the combinatorial challenges
of heterogeneous computation kernels and intricate data depen-
dency (i.e., intra- and inter-snapshot data dependency). This makes
the computations of DGNN hard to scale, posing significant chal-
lenges in parallelism, data reuse, and communication. To address
this challenge, we propose DiTile-DGNN, an efficient accelerator
for large-scale DGNN execution. The proposed DiTile-DGNN con-
sists of a redundancy-free parallelism strategy, workload balance
optimization, and a reconfigurable accelerator architecture. Specifi-
cally, we propose a redundancy-free framework that can efficiently
find an efficient parallelism strategy that can fully eliminate the
data redundancy between graph snapshots while minimizing the
communication complexity. Additionally, we propose a workload
balance optimization for DGNN models to enhance resource utiliza-
tion and eliminate synchronization overhead between snapshots.
Lastly, we propose a reconfigurable accelerator architecture, with a
flexible interconnect, that can be dynamically configured in sup-
port of various DGNN dataflows. Our simulations demonstrate that
DiTile-DGNN achieves 48.4%, 56.1%, 23.2%, and 36.1% reductions in
execution time and 83.4%, 84.0%, 75.6%, and 71.4% improvements in
energy efficiency compared to state-of-the-art accelerators, includ-
ing ReaDy [20], DGNN-Booster [8], RACE [51], and MEGA [12],
on average across multiple DGNN datasets.

ACM Reference Format:

Jiagi Yang, Hao Zheng, and Ahmed Louri. 2025. DiTile-DGNN: An Efficient
Accelerator for Distributed Dynamic Graph Neural Network Inference.
In Proceedings of the 52nd Annual International Symposium on Computer
Architecture (ISCA °25), June 21-25, 2025, Tokyo, Japan. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3695053.3731017

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISCA ’25, Tokyo, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1261-6/25/06

https://doi.org/10.1145/3695053.3731017

1240

Hao Zheng
University of Central Florida
Orlando, Florida, USA
Hao.Zheng@ucf.edu

Ahmed Louri
George Washington U.
Washington DC, USA

louri@gwu.edu

1 Introduction

Dynamic Graph Neural Networks (DGNNs) [9, 28] have gained
significant attention due to their ability to model complex temporal
and spatial relationships in evolving graphs [6, 11, 27, 41], making
them suitable for applications such as social network analysis, rec-
ommendation systems, and traffic prediction [9, 28]. By combining
Graph Neural Networks (GNNs) with Recurrent Neural Networks
(RNNs), DGNNs can effectively capture both structural and tem-
poral dynamics within graph data [38]. However, scaling DGNN
computations faces a major challenge due to the computational and
communication complexity incurred by the temporary and spatial
graph dependency, as well as redundancy between consecutive
snapshots.

Current DGNN accelerators are often optimized for a centralized
architecture [8, 12, 20, 48, 51, 54], and few of them have consid-
ered the challenges of scaling DGNN in a large-scale accelerator
with distributed buffers. The challenge is multi-fold, including the
complex data dependency among or within snapshots, redundancy
between consecutive snapshots, and unbalanced workload caused
by the heterogeneous graph data sets and models. Unfortunately,
existing machine learning accelerators [30, 31, 45, 47, 49, 50, 53],
irrespective of deep learning and graph neural networks, are only
optimized for a single model. Furthermore, several prior works [42]
have attempted to accelerate multi-DNN models. However, they
are inefficient in handling the distinct workload characteristics of
RNNs and GNNGs.

Recent research [7, 8, 12, 16, 20, 51, 56] attempted to optimize the
parallelism efficiency of DGNNs, however, they only pursue data-
level parallelism by distributing graph snapshots without consider-
ing their data dependency. Consequently, this leads to unbalanced
workload and irregular communication patterns. For example, prior
work [7, 8, 16, 20, 51] distribute each snapshot to individual com-
puting tiles. While each snapshot executes independently in the
GNN phase, RNN model needs to collect the intermediate data from
each snapshot to comprehend the evolving graph components. This
requires a global synchronization among computing tiles. On the
other hand, MEGA and Aligraph [12, 56], following traditional
GNN dataflows, partition all the snapshots among computing tiles
to avoid the synchronization issue during the RNN phase. However,
the distributed graph components incur irregular communications
to aggregate vertex features at the GNN phase.

Furthermore, prior work has indicated that the variation of con-
secutive snapshots is negligible, with 86.7% to 95.9% of vertices
remaining the same over time [51]. To leverage this opportunity,
current DGNN accelerators proposed reusing repetitive computa-
tions and their intermediate results between consecutive snapshots.


https://orcid.org/0000-0002-9546-1824
https://orcid.org/0000-0003-4391-2774
https://orcid.org/0000-0003-4262-6688
https://doi.org/10.1145/3695053.3731017
https://doi.org/10.1145/3695053.3731017
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3695053.3731017&domain=pdf&date_stamp=2025-06-20

ISCA 25, June 21-25, 2025, Tokyo, Japan

However, parallelizing snapshots is inevitable to incur random com-
munications as the repetitive computations are unpredictable. This
further exacerbates the communication complexity in distributed
DGNN inference.

Lastly, real-world dynamic graphs have skewed degree distribu-
tions, and therefore, evenly partitioning graphs is required in graph
applications. For example, BNS-GCN [43] ensures workload balance
by evenly distributing vertices. Graph Ladling [21] divides vertices
into partitions without considering edge connection. This leads
to increased synchronization overhead and inefficient resource
utilization in distributed settings. Existing DGNN frameworks typi-
cally employ coarse-grained partitioning strategies, such as snap-
shot [12, 56] or vertex partitioning [7, 8, 16, 20, 51]. We observed
that prior works only balance the workload for a particular model or
execution phase without considering the DGNN as a whole. In this
paper, we argue that the parallelism optimization of DGNNs should
consider the combined effects of both GNN and RNN models. To
this end, we mathematically analyze the intricate data dependency
among and within snapshots, and fully understand their commu-
nication and computation characteristics at both GNN and DNN
phases. Upon this theoretical analysis, we propose DiTile-DGNN,
a novel high-performance and energy-efficient distributed-tiled
accelerator for efficient large scale DGNN execution. Specifically,
this paper makes the following contributions:

e We propose a parallelism strategy that can simultaneously
balance the data reuse and parallelism efficiency of both
GNN and RNN models. Specifically, we propose a new tiling
algorithm that aims to reduce costly off-chip communica-
tion. The parallelism strategy comprehensively considers
the communication and data reuse of compounded GNN and
RNN kernels.

e We propose a workload optimization strategy to balance the
workload among kernels, enabling even distributed work-
load at both GNN and RNN models. This significantly im-
proves resource utilization, reduces synchronization costs,
and enhances scalability.

e We propose a reconfigurable and distributed-tiled accelerator
architecture to efficiently manage the diverse communica-
tion requirements of DGNNs. The architecture dynamically
configures the interconnect to handle both regular commu-
nication for temporal dependencies and irregular commu-
nication for spatial dependencies. By combining dedicated
paths for regular communication with flexible routing for
irregular exchanges, it minimizes bottlenecks and ensures
scalability for dense and evolving graph workloads. Addi-
tionally, it adapts to graph structure and workload dynamics,
optimizing resource utilization and reducing communication
overhead.

We conduct a detailed performance and energy evaluation
through simulation and show that the proposed accelerator achieves
48.4%, 56.1%, 23.2%, and 36.1% reductions in execution time and
83.4%, 84.0%, 75.6%, and 71.4% improvements in energy efficiency
on average across multiple DGNN datasets compared to ReaDy [20],
DGNN-Booster [8], RACE [51] and MEGA [12], respectively.

1241

Jiaqi Yang, Hao Zheng, and Ahmed Louri

G:,eature Vectors G* e G /g XA XTI X6l XTIA] XTIR] o
ama A / 2
ol & | : i g
Q I I LN ! &
a . D D * I 51
L o ! A $
GNN Kernel GNN Kernel GNN Kernel _E
GCN Layers GCN Layers . E
| S

: 2

Figure 1: (a)An example of a classic DGNN model, (b) a GNN
computation kernel, and (c) an RNN computation kernel.

2 Background

2.1 Dynamic Graph Representation

In real-world applications [28, 32, 34, 35, 38, 46, 52], graphs evolve
over time, with vertices and edges being frequently added or re-
moved. In general, there are two types of dynamic graphs [23]
that have been used to record the temporal changes on the graphs:
continuous-time dynamic graphs and discrete-time dynamic graphs.
Continuous-time dynamic graphs are often described as a pair
< G, O >, where G represents the initial state of a static graph, and
O is a set of updates for vertices and edges. Discrete-time dynamic
graphs are viewed as a sequence of discrete snapshots sampled at
regular intervals illustrated in equation 1, where G’ indicates a
graph snapshot at the timestamp t. In this work, we design DiTile-
DGNN based on the discrete-time dynamic graph representation.

DG = {G',G%,...,GT} (1)

2.2 Discrete-Time Dynamic Graph Neural
Network

Discrete-time DGNN models [7] are designed for analyzing discrete-
time dynamic graphs. These models can be classified into two
groups: typical DGNN models and specialized DGNN models.

Typical DGNN models [7, 22, 25, 29, 55] are composed of both
conventional Graph Neural Network (GNN) and Recurrent Neural
Network (RNN) kernels. For discrete-time dynamic graphs, the
DGNN model sequentially processes each snapshot to identify the
changes occurring in the graphs, as shown in Figure 1 (a). The GNN
kernel takes a snapshot G* as the input, and it functions as a typical
GNN model to learn the latent representation of graphs. The output
feature vector Z! is then fed into the RNN kernel to generate a
hidden state vector H?, which contains both graph structure and
temporal information. Consequently, the computations of DGNN
can be formulated as equation 2.

Z!' =GNN{G"}
H!' =RNN{H'!, 7%}
The GNN kernel: Figure 1 (b) shows a Graph Convolutional
Network (GCN) layer. The GCN layer contains two computation

phases, aggregation and combination. For the aggregation phase,
each vertex v collects the feature vectors from its connected vertices.

@)



DiTile-DGNN: An Efficient Accelerator for Distributed Dynamic Graph Neural Network Inference

ISCA 25, June 21-25, 2025, Tokyo, Japan

Temporal Parallelization Strategy Spatial Parallelization Strategy
——0 —0—0 — b GaE
L B|e 12 ! G2 i 63 ?
> i (P .
2 E§ G — G
8 o Ry Ry R x4
§ % GNN kernel £ gm'é'NNkernel GNN kernel {""GNN'kernei [F]
5 = >N £ HO AN F) (e HD o2 Al
2 @ spatiali | S & H (1:4]
- GP ;Comm < ,s@ — ®I — | :‘g@ I X[q
3 e E 8% | iG> % («5@ Qi % |60 ©ilg
=& ZY[AF] § T Z3[A:G] o ZMAG] E Ol e
2 i Jﬂm dﬂmm e 1Al
Tile1 Tile2 (a) Tile3 Tile4
: A2 E_ < 1y T s xu
ZE g u w [F]
e & GNN kernel S5 GNN kernel iy GNN kernel [y GNN kernel
L] E 25“ N 6 ;. A 2. n 6
€ c g ® I N (B] & B) I x
3 O N
B2 = Tid—t T e 6 O w0 @ T O]
2 = < o2 < >3 & . 3
‘e 3 = Z°[AF] Y Z°[A:G] = Z'[A:G] < x[124]
= ﬁw > o 3
=« [N W Exermelatskemed] Bemeliamekemet]
: Tilel Tile2 b Tile3 Tiled Tile2 (d) Tile3

Figufe 2: (a) An example of temporal parallelization strategy w.

thout redundancy-free mechanism,(b) an example of temporal

parallelization strategy with redundancy-free mechanism,(c) an example of spatial parallelization strategy without redundancy-
free mechanism,(d) an example of spatial parallelization strategy with redundancy-free mechanism (G¥ is the a-th snapshot,
G%P means f-th part of the a-th snapshot, X1 [V] means the input feature of vertex V in the m-th to n-th snapshots, Z%[V]
means the output feature of vertex V in the a-th snapshot, H*[V] is the hidden feature of vertex V in the a-th snapshot).

During the combination phase, the features are aggregated and
multiplied by a weight matrix W; The computations of GCN can be
defined as follows:

x;[v] :Relu(Atx;_l[v]Wl),l e (0,L] 3)

where A? is the normalized Laplacian matrix over the adjacency
matrix of the graph G?, xl'_1 [¢] is the initial feature vector of the
vertex v at I;;, GCN layer at the timestamp t, xlt [0] is the updated
feature vector of the vertex v of l;, GCN layer at the timestamp t, L
is the number of GCN layers, and W] is a weight matrix at [,;, GCN
layer. It should be noted that the updated feature vector of the last
GCN layer (xi [0]) is defined as the output feature vector z!. This
will be used as the input for the RNN kernel to generate a hidden
state vector h%. While many GNN variants have been proposed such
as GraphSAGE[17] and Graph Isomorphism Networks (GINs)[44],
their key computations can be abstracted in the form of adjacency
matrices.

The RNN kernel: As mentioned, the RNN kernel takes the out-
put of GNN kernels as the input (i.e., z}) to generate the hidden
state whenever the snapshot arrives. This computation involves
matrix multiplication, element-wise multiplication (o), addition,
and activation functions (e.g., sigmoid, tanh). For example, Figure 1
(c) illustrates an example of RNN computations, where the most
popular long short-term memory (LSTM) [18] is used. This work
can also be efficiently applied to other RNN variants, such as gated
recurrent units (GRUs). LSTM involves four input matrix multipli-
cations by multiplying the input vector z! with four input weight
matrices, W;, Wy, W, and W,, as shown in Equation 4.

il = sigmoid(W;z!, + U;h%™1)
fl= sigmoid(szf, + Ufhf,_l)
ol = sigmoid(W,z! + Uohf,_l) (4)
ch=fto c,ﬁ’l +il o tanh(W,z! + Uchffl)
hi = ol o tanh(cl)
Furthermore, the LSTM model includes four matrix multipli-
cations by multiplying the hidden vector h~! with four hidden

1242

weight matrices, U;, U £, Uo, and U, respectively. These eight matrix
multiplications eventually produce the input gate i, forget gate f?,
output gate of, and cell state feature ¢’ of vertex o.

3 Motivation

3.1 Pitfalls of Existing DGNN Parallelization
Strategies

Despite advancements in the parallelization of Dynamic Graph
Neural Networks (DGNN), current approaches face several critical
limitations, especially in efficiently managing temporal and spatial
dependencies inherent in dynamic graphs. Below, we outline the
key challenges associated with conventional parallelization strate-
gies, which result in suboptimal performance in large-scale DGNN
applications.

3.1.1 Inefficiencies in Temporal Parallelization Strategies. The con-
ventional temporal parallelism strategy [7, 8, 16, 20, 51], illustrated
in Figure 2(a), assigns each snapshot of the dynamic graph to a sep-
arate distributed tile, allowing each tile to independently execute
GNN kernels. The communication involved in aggregating vertex
features within GNN kernels is referred to as spatial communication
and is confined within each distributed tile. However, due to tempo-
ral dependencies across RNN kernels, vertex exchanges—referred
to as temporal communication—are required between tiles to syn-
chronize RNN computations. In DGNN applications with a large
number of snapshots, this setup significantly increases the over-
head of temporal communication, resulting in inefficiencies and
high communication costs.

Most real-world dynamic graphs exhibit strong temporal simi-
larity, meaning there are substantial overlaps in the input features
and neighbors between consecutive snapshots. On average, unaf-
fected vertices account for 86.7% to 95.9% of all vertices in various
real-world dynamic graphs [51], as each batch of updates typically
affects only a small portion of the graph. This high level of simi-
larity allows us to reuse the final states of most vertices from the



ISCA 25, June 21-25, 2025, Tokyo, Japan

previous snapshot to efficiently compute the updated states for
the current snapshot. To minimize redundant communication, the
redundancy-free temporal parallelism strategy (Figure 2(b)) lever-
ages this overlap by reusing vertex states across distributed tiles,
incrementally updating the states of vertices for the latest snapshot.
This approach introduces what we term reuse communication. For
example, the output features of vertices A, D, E, and F in the first
snapshot remain the same in the second snapshot. As a result, spa-
tial communication is only needed for aggregating the features of
vertices B and C. Additionally, the output features of vertices A,
D, E, and F in tile 1 can be reused and sent to tile 2 through reuse
communication, thereby serving as the output features of these ver-
tices in the second snapshot. While this strategy effectively reduces
redundant spatial computations between consecutive snapshots,
vertex exchanges for RNN computations are still required, leading
to regular temporal communication overhead. Furthermore, when
snapshots have significant overlap, the reuse mechanism can in-
troduce irregular communication overhead, further exacerbating
inefficiencies.

3.1.2 Inefficiencies in Spatial Parallelization Strategies. In spatial
parallelization (depicted in Figure 2(c), the graph is partitioned, and
each distributed tile processes a subset of vertices. While this allows
local execution of RNN kernels, GNN kernel computations require
remote spatial communication among tiles. When DGNN applica-
tions have dense snapshots, the need for spatial communication
increases substantially, causing performance degradation due to
high spatial communication overhead. The redundancy-free spatial
parallelism strategy (Figure 2(d)) reduces overhead by reusing the
output features of vertices locally within each tile, thereby avoiding
redundant computations and communication. For instance, if the
output features of vertex A in the first snapshot remains unchanged
in subsequent snapshots, the intra-tile spatial communication re-
quired for aggregating vertex A (i.e., X/241[D]) and the inter-tile
spatial communication (i.e., x[241[C] and X[241[F]) can be re-
placed by more efficient intra-tile reuse communication (Z [13] [A]).
However, in cases where snapshots are dense with limited simi-
larity, spatial communication costs can still be high, particularly
when vertex distributions shift frequently between snapshots. This
results in inefficiencies and challenges in maintaining scalability.

3.1.3  Inflexibility in Adapting to Diverse Workloads. A significant
limitation of existing DGNN parallelization strategies is their static
nature. These strategies are not optimized to adapt dynamically
to varying workload characteristics, such as changes in the num-
ber of snapshots or the degree of similarity between consecutive
snapshots. As a result, they either suffer from excessive temporal
communication in temporal parallelism or incur high spatial com-
munication costs in spatial parallelism. The inability to adapt to
dynamic workloads results in increased computational and commu-
nication inefficiencies, particularly in large-scale DGNN scenarios.

To overcome these challenges, a more adaptable approach is
required. The proposed redundancy-free dynamic parallelism strat-
egy optimizes the parallelization process by dynamically selecting
the most efficient level—temporal, spatial, or a combination—based
on the specific workload characteristics. By minimizing redundant
communication and computation at both temporal and spatial levels,

1243

Jiaqi Yang, Hao Zheng, and Ahmed Louri

Algorithm 1: Proposed Parallelism Optimization

Input :Application features:
The number of layers in the GNN kernel (L),
Total number of the snapshots (T),
The number of the vertices in each snapshot (V;,i € (0, T]),
The number of the edges in each snapshot (E;, i € (0, T]),
The dissimilar rate between i — th and (i — 1) — th snapshots
(Disj,i € (0, T]).
Input :Hardware features:
Total number of available tiles (TotalTiles),
The capacity of the distributed buffer (Cpp).
Output:Efficient parallel factors: P, and Ps.
1 /* Generate the size of subgraph with minimal DRAM Access */
2 Procedure Subgraph Tiling
3 // Divide the dynamic graph into multiple subgraphs.
4 SVi =Vi/a;
s | DA=EL {Vitax[E:xSVix (Vi-SVy)1/(Vi)*}:

6 // Choose tiling factor with minimal DRAM access
7 for datavolume(SV;) € [0,Cpg] do

8 ‘ a «— Minimal(DRAMaccess);

9 end

10 /* Generate efficient parallel factors with minimal inter-tile
communication amount */

11 Procedure Parallelization Optimization

12 TotalComm = Tcomm() + RFScomm() + ReComm/()
13 for Pls € (0, VTotalTiles], Sp—‘f € (0,VTotalTiles] do
14 ‘ Ps, Py «— Minimal(TotalComm);

15 end

as well as reducing the volume of costly inter-tile communication,
this strategy effectively lowers communication overhead while en-
suring efficient execution of GNN and RNN kernels. This adaptive
approach enhances scalability and performance, making it highly
suitable for diverse and dynamic DGNN workloads where graph
characteristics frequently change.

4 Redundancy-free Dynamic Parallelization
Strategy for Distributed DGNN Acceleration

The objective of the proposed redundancy-free dynamic paralleliza-
tion strategy is to generate an optimized parallelization strategy
for distributed DGNN inference to reduce off-chip memory access
and inter-tile communication. Specifically, the proposed paralleliza-
tion strategy includes (1) a matrix tiling algorithm to partition
graph snapshots into subgraphs to reduce DRAM access and (2) a
parallelism optimization technique that reduces inter-tile commu-
nication and eliminates data and computation redundancy in both
GNN and RNN kernels.

4.1 Proposed DGNN Matrix Tiling

Unlike traditional deep learning models, the size of dynamic graphs
is substantial and typically dominates the on-chip memory. Con-
sequently, it is imperative to partition each graph snapshot into
multiple subgraphs. It should be noted that the proposed algorithm
focuses on inference, but the proposed methodology can be applied
to the training stage where gradient and embedding propagation



DiTile-DGNN: An Efficient Accelerator for Distributed Dynamic Graph Neural Network Inference

follow graph structure as well. Specifically, each snapshot is parti-
tioned into multiple subgraphs regardless of their size, as shown in
Algorithm 1 (Line 3-4). The number of subgraphs is referred to as
the tiling factor a. The number of vertices in the subgraph of the
i-th snapshot (SV;) is defined by Equation 5, where V; is the number
of the vertices in the i-th snapshot.

SVi = Vi/a ©)

The proposed tiling strategy selects an appropriate number of
subgraphs to meet on-chip storage constraints while minimizing
redundant graph components. The RNN kernels were not consid-
ered when estimating DRAM access, as the output of the GNN
kernels serves as the input for the RNN kernels. This can be further
optimized through dataflow design to enhance intermediate data
reuse, which will be discussed later. Additionally, both GNN and
RNN weight matrices are relatively small compared to the graph
data. Specifically, the DRAM access of the GNN kernels for the
input dynamic graph(DA) is represented by Equation 6 and shown
in Algorithm 1 (Line 5), where E; is the number of the edges in the
i-th snapshot, ar}d T is the total number of the snapshots.

DA= ) {Vi+ax [E;x SVi x (Vi = SV)1/(V0)*} ©)
i=1
The number of the vertices in the subgraph of the i-th snapshot
(SV;) related data is limited by the distributed buffer capacity(Cpp)
shown in Algorithm 1 (Line 7). Then we can find the tiling factor
() that can minimize the DRAM access with the distributed buffer
capacity(Cpp) limitation, shown in Algorithm 1 (Line 8).

4.2 Proposed DGNN Parallelism Optimization

Spatial and temporary parallelism are required for deep learning ap-
plications to enhance parallelism and data reuse. Unlike deep learn-
ing models that rely on loop ordering, assigning graph partitions
and snapshots is vital to ensure spatial and temporary parallelism
for DGNN workloads. Specifically, the parallelism of DGNN is deter-
mined by (1) data dependency between snapshots (called temporal
parallelism), (2) graph data parallelism (called spatial parallelism),
and (3) redundant computations between snapshots (called reuse).
Nevertheless, given the use of distributed buffers, communication
is avoidable to eliminate data duplication. Consequently, we aim to
design an analytical model to optimize the placement of snapshots
and graph partitions, reducing the overall communication between
processing tiles. Specifically, inter-tile temporal communication
refers to the communication caused by temporal dependencies
between consecutive snapshots in the RNN kernels across tiles.
The inter-tile spatial communication describes inter-tile spatial de-
pendencies within the graph structure for the GNN kernel in the
same snapshot. Reuse communication is the communication be-
tween consecutive snapshots across tiles to reuse intermediate data
between snapshots due to graph similarity. For example, Figure 3
shows the three types of communication patterns in DGNNs, where
the number of snapshots assigned to each tile is referred to as the
snapshot parallel factor, P, and the number of vertices assigned to
each tile is the vertex parallel factor, P,

The inter-tile total communication amount (TotalComm) can be
modeled by the Equation 7 and shown in Algorithm 1 (Line 13).
Tcomm is the inter-tile temporal communication amount. Scomm is

1244

ISCA 25, June 21-25, 2025, Tokyo, Japan

Tile2

631 @32

GliTglE
) 317G

09
(e}

Z3 [D

: G"‘ G2
| 12°1a:D] (A D] *[A:D] X @
RNN Kernel T\e

GNN kernel
GNN kernel

CJ

~: GNN kerne:l

21

= | z
wl |2 2 spatial 4
o % > Comm >
51,3 = e - - 63,3 53,4
(e 2 rgis 2 DGIITGEA 78 PRI gEd 6—06
§6 7R S §6—0 [r|i§ 66
z z z z
= H z z: z
¢33 © O H| O s O GG
[F]
1[E,F] [EF] Z2[E,F] [EF] [E,F] [EG 2[E,F]
Tile3 Tilea

Figure 3: An example of redundancy-free and dynamic paral-
lelization strategy. G*# means S-th part of the a-th snapshot,
X!mn][V] means the input feature of vertex V in the m-th
to n-th snapshots, Z*[V] means the output feature of vertex
V in the a-th snapshot, H*[V] means the hidden feature of
vertex V in the a-th snapshot.

the inter-tile spatial communication amount. Recomm is the inter-
tile reuse communication amount.

TotalComm = Tcomm + RFScomm + ReComm 7)

The parallelism optimization aims to find the values of Ps and
P, that minimize TotalComm (Algorithm 1, Line 15). The snapshot
parallel factor Ps is constrained by the total number of snapshots
(T) and the total number of distributed tiles (TotalTiles). Similarly,
the vertex parallel factor P, is limited by the number of vertices in
the subgraph of the i-th snapshot (SV;) and TotalTiles (Algorithm 1,
Line 14).

4.2.1 Inter-tile Temporal Communication Modeling. The inter-tile
temporal communication addresses temporal dependencies of con-
secutive snapshots in the RNN kernels across tiles. The number
of subgraphs is referred to as the tiling factor, . The number of
snapshots assigned to each tile is referred to as the snapshot par-
allel factor, Ps. AvgSV is the average vertex number among all
sub-snapshots. The inter-tile temporal communication amount of
all subgraphs can be modeled by the Equation 8.

T
Tcomm:aXAngVx([P—'l -1) (8)
S

4.2.2 Inter-tile Spatial Communication Modeling. The inter-tile
spatial communication manages inter-tile spatial dependencies
within the graph structure for the GNN kernel in the same snap-
shot. The inter-tile redundant-free spatial communication amount
(RFScomm) of all subgraphs can be modeled by the Equation 9,
where Scomm is the inter-tile spatial communication amount of
all subgraphs without redundant-free mechanism and RScomm is
the inter-tile redundant spatial communication amount of all sub-
graphs.

RFScomm = Scomm — RScomm 9)

The inter-tile spatial communication amount of all subgraphs
without redundant-free mechanism can be represented by the Equa-
tion 10, where TotalScomm is the total spatial communication
amount of all subgraphs and IntraTileScomm is the intra-tile spatial
communication amount of all subgraphs.

Scomm = TotalScomm — IntraTileScomm (10)



ISCA 25, June 21-25, 2025, Tokyo, Japan

Algorithm 2: Balance-aware Workload Optimization

Input
The number of layers in the GNN kernel (L),
Total number of the snapshots (T),
The average number of the vertices in sub-snapshots (AvgSV),
Total number of available tiles (TotalTiles),
The efficient parallel factors (P, and Ps).
Output:Partition results
1 /* Calculate vertex workload for all layers and all snapshots
*/
2 fort € [1,T] do
3 forl € [1,L] do
4 for !’ € [1,1] do
5 | oload[i]+=N" (o})
6 end
7 end
s end
9 /* get partition and balanced groups */
partition = RoundRobin(vload|[i])
1 BalancedGroups = Split(partition[Tile;q], Py, Ps)

2 return Partition results

[
=)

-

-

The total spatial communication amount of all subgraphs without
redundant-free mechanism can be represented by the Equation 11,
where AvgSE is the average edge number among all sub-snapshots
and L is the GNN layer amount of the GNN kernel.

TotalScomm =a X L X T X AvgSE (11)

The intra-tile spatial communication amount of all subgraphs with-
out redundant-free mechanism is represented by the Equation 12.

. AvgSE
IntraTileScomm = a X L X T X —
(AvgSV) (12)
AvgSV AvgSV
X {P*| 22825 |+ Mod (225 )2)
P, P,

The ratio of inter-tile redundant spatial communication amount
and total redundant spatial communication amount is related to
the ratio of inter-tile spatial communication amount and total spa-
tial communication amount. The inter-tile redundant spatial com-
munication amount of all subgraphs can be represented by the
Equation 13, where TotalRScomm is the total redundant spatial
communication amount of all subgraphs.

RScomm = TotalRScomm X Scomm/TotalScomm (13)

The total redundant spatial communication amount of all sub-
graphs can be represented by the Equation 14, where VScomm rep-
resents the related spatial communication amount of each vertex
within all L layers GNN kernel and Dis is the average dissimilarity
rate of each vertex between consequent snapshots.

TotalRScomm = a X T X AvgSV X (1 — Dis) X VScomm  (14)

L7 !/
AvgSE
Vs = 15
comm 2 ; (AngV) (15)

4.2.3  Inter-tile Reuse Communication Modeling. Given the graph
similarity between snapshots, a significant amount of intermediate
data could be reused between consecutive snapshots. The interme-
diate data exchange between snapshots is defined as inter-tile reuse
communication. The inter-tile reuse communication amount of all

1245

Jiaqi Yang, Hao Zheng, and Ahmed Louri

Workload of Vertices Workload Order Load-balanced Groups

1 2 n > =
_G’_ _?\_ i [L[L? L3 |LE | vioad[i] Order| vload[i] Group | 1t
Al7|8]9]8] 32 1 _|vioad[C -
Pl P\L B[3[6[7]3] 19 2 [vioad[Al] |BPWi|Visr
gdlE=C — c7[10[10[ 7] 34|, [™3 [vioadlel| oy ppw, 134
@ e Dlalalala| 16 4| vioadlF
—0 — 0 E[5]7]7]5]| 24 5 _|vioad[B]| |BDWs | V¢,
/G) Fla[a|e6[6]| 20 6 |vload[D] ”
&L I —Ji ol [e 3[3] 6 7 [vioadial] |BPWs|VeEn

Figure 4: An example of workload balance optimization.
subgraphs can be modeled by the Equation 16. f%] represents the
number of groups into which the T snapshots are divided, where
each group contains Pg snapshots.

T
Recomm = a X {fP—'l — 1} X AugSV X (1 — Dis) x VScomm  (16)
S

5 Proposed Workload Balance Optimization

In DGNNSs, the workload is highly related to the vertex. Prior
work [13, 30] simply estimates the workload of graph analytics
based on the vertex or edge count. To analyze the complex DGNN
workload, we propose a new analytical model that can estimate
the multi-layer GNNs based on vertex structure. Specifically, the
computation of GNNs depends on the number of L layers of neigh-
bors associated with a given vertex. The workload (Lf ) for a vertex
(vit € G') in snapshot G’ is defined as the recursive sum of degrees
of all L layers, as shown in Egualtion 17:

L= > (N"(s})) )

=11'=1

Here, N’ (vit) represents the set of I’-hop neighbors of vertex Uf in
G'. The computation cost for Recurrent Neural Networks (RNNs)
is disregarded, as it is uniform for all vertices.

To estimate the vertex workload in DGNN, we propose a label
aggregation technique that can record the total amount of workload
related to a given vertex. Initially, each vertex is assigned a label of
1, representing a workload contribution of 1. Labels of vertices are
propagated along edges during the GNN aggregation, while their
values are progressively accumulated as they reach the destination
vertex. This process is repeated for all L layers in an L-layer DGNN
to determine the final workload for each vertex.

Based on the proposed labeling technique, the proposed work-
load optimization is summarized in Algorithm 2. We start initial-
izing a data structure, vload, to store the cumulative workload of
each vertex across all layers and snapshots. This data structure
provides a comprehensive view of the computational demand asso-
ciated with each vertex, including its multi-layer interactions and
dynamic graph updates across snapshots.

The next step is to compute the workloads of all vertices by
iterating through the L layers of the GNN and the T snapshots of
the dynamic graph(line 2-8). This can reflect the influence of multi-
hop dependencies in GNN computations. The cumulative vertex
workloads are progressively updated in vload to capture the com-
plete workload for each vertex across all layers and snapshots. For
example, consider a GNN kernel with two layers (L = 2). The compu-
tational workload of vertex A in the first snapshot (le“), as shown in
Figure 4, is determined by its receptive field. Specifically, according
to Equation 17, it can be formulated as 2 x N'! (0114) +N? (ZJ}A), where
N1 (0114) represents the number of 1-hop neighbors, and N2 (v}{) rep-
resents the number of 2-hop neighbors in the first snapshot. Given



DiTile-DGNN: An Efficient Accelerator for Distributed Dynamic Graph Neural Network Inference

ISCA 25, June 21-25, 2025, Tokyo, Japan

> Off-chip DRAM off-chip A RDTA 1]
Data o
— Control Signal L il E @ @ = &
DiTile-DGNN| [Tile[Balanced and Dynamic Workioad| © — = |b: |s: |;: £
Accelerator 1 BDW, ’J%l P~ Q dg
]| ™ 4 r_l | =] o] ] = S
|® > [ae] BDW, | ® I W 1 | =
A "s'é Instruction Queuj] ; - —~ — = 5
.\ Balanced and Dynamic 51 { (Controller) «[TTTT+; = ! = = = |- 2
Reservoir £ H .
Workload Generator S} I-- 2
T@ @t Reconfigurable 1 = = —! —
§ Verex Workioad @ @ Distributed Tile Array I
Optimal RDTA) o K = Kl
€| | | Renef1[2[-I] paral [T NG R BRI BRI BR
8| | | [vioadll71-Io| Facrors [B150 : R ® ® ® e
< ot A I-_l - - - Processing
- Workload Parallelization | 1 1 Unit (PPU)
g Comp Unit gy Adj Unit . m N n ® ® . o
o CScheduler ) ® Fla| FIal il Flz Q.8 [ Pooling
| ogr Eo oo rrten | | O C
i Redund - i Multiplier -
PlEpEiicy (Buffer Controller) pUice Uil 1 Y Bias

(a)

(b)

Figure 5: (a) The overview of DiTile-DGNN accelerator, (b) the reconfigurable and distributed tile array, (c) the microarchitecture
of the proposed tile, (d) the microarchitecture of the proposed PE.

that N1 (0114) =3and N 2(011‘\) = 1, the total workload of vertex A in
the first snapshot is 7. Thus, the total workload of vertex A across
all snapshots (vload(A)) is 32.

Once the workloads for all vertices are computed, they are sorted
in descending order to prioritize vertices with higher computational
demands for allocation. For example, as shown in Figure 4, the
workloads for all vertices are sorted in descending order as follows:
vload(C) = 34, vload(A) = 32, vload(E) = 24, vload(F) = 20,
vload(B) = 19,vload(D) = 16,vload(G) = 6. The sorting algorithm
ensures an even distribution of vertices across tiles. The sorted
workloads are then allocated to distributed tiles using a round-
robin method (line 10), effectively balancing the workloads across
tiles. This process simultaneously divides the vertices into load-
balanced groups(BDW), where each group contains Ps snapshots,
and each snapshot comprises P, vertices. For instance, with the
parallel strategy where each group consists of two snapshots and
each snapshot contains four vertices, the load-balanced groups are
divided as follows: BDW(1 534}, as shown in Figure 4.

6 Proposed Accelerator Overview

We present an overview of the proposed accelerator in Figure 5
(a), which includes four distinct designs to support the proposed
workload partitioning and dataflow. The Workload Computation
Unit calculates the workload of each vertex during DGNN exe-
cution. The Parallelization Strategy Adjuster determines the
parallelization strategy, balancing the number of snapshots and
vertex counts to enhance efficiency. The Balanced and Dynamic
Workload Generator produces balanced and dynamic workloads
based on load information and the selected parallelization strategy,
directing these workloads to the reconfigurable, distributed tile
array. Finally, the Reconfigurable and Distributed Tile Array
executes the balanced and dynamic workloads, pipelining both the
GNN and RNN kernels to maximize performance.

We illustrate the specific function of each module following the
example shown in Figure 5. First, the host (e.g., CPU) sends requests
to the request dispatcher (Step @). The control unit then dispatches
DGNN model information and graph metadata to the Workload
Computation Unit and the Parallelization Strategy Adjuster. For
a dynamic graph DG, the Workload Computation Unit calculates

1246

the workload for each vertex during DGNN execution (Step ®). Si-
multaneously, using the dynamic graph DG and hardware resource
information, the Parallelization Strategy Adjuster determines an
efficient parallelization strategy to distribute snapshots and their
partitions among tiles to minimize communication overhead (Step
®). Next, the load information and efficient parallel factors are
sent to the Balanced and Dynamic Workload Generator (Step @).
This process yields a balanced and dynamic logical partition, de-
noted as BDW = BDW;, BDW, ..., BDWy. The partition is then
stored in the Balanced and Dynamic Workload Reservoir (Step ®).
In each iteration, the reservoir produces balanced and dynamic
workloads for each tile (Step ®). These workloads are then routed
to the Redundant-Free Unit, which eliminates communication and
computation redundancy between consecutive snapshots (Step @).

Furthermore, the generated balanced and dynamic workload, the
redundant-free strategy, and graph metadata are sent to the Recon-
figuration Unit (Step ®). This unit configures the Network-on-Chip
(NoC) to support various communication patterns required by dif-
ferent types of data exchanges, including temporal, spatial, and
reuse communication within the Reconfigurable and Distributed
Tile Array (RDTA) (Step @). Once the configuration is complete,
the instruction dispatcher begins issuing instructions, as in conven-
tional accelerators. The RDTA then executes the DGNN, pipelining
the GNN and RNN kernels throughout each iteration.

6.1 Reconfigurable and Distributed Tile Array

To address the diverse communication and dataflow requirements
of DGNNS, we propose a Reconfigurable and Distributed Tile Ar-
ray with a 4 X 4 array of tiles. The tiles are interconnected by a
reconfigurable interconnect. For example, as shown Figure 5 (b),
the interconnect design utilizes a ring topology for horizontal con-
nections and a combination of ring topology and reconfigurable
links (Re-Link) for vertical connections. The horizontal rings are
configured to handle regular communication to exchange the tem-
poral dependency for RNN kernel and reuse computations between
snapshots, while vertical links support irregular communication
for spatial dependency within each graph snapshot.




ISCA 25, June 21-25, 2025, Tokyo, Japan

Reconfiguration Spatial(Snapshot) Parallelization
a=[1:Pg] a=[Ps:2Pg] a=[2Pg:3Pg] a=[3Ps:4P;]
I

war1 F A F[ 2 B J
B=[1:P,] ®: ’ ® ‘R

1 t

Tile
il

emporal Com

euse Comny

Tile]
-
Tile| | 3

B=IP,:2P,]

Tile]
L
( ]
j

Irregular Pattern

L'e

Spatial Comm

Regular Pattern

egylar Pattern[@
— @

Tile'

B=[2P,:3P,]

o

Spatial(Vertex) Parallelization

R 'QJ

L4

Tile

Tile i
(=N ]

Tile

Tile

pei2p,:3p,1 | ILs @)

Figure 6: An example for proposed dataflow and topology
configuration.

6.1.1  Proposed Dataflow Mapping for DGNNs. Mapping dataflows
to the reconfigurable tile array is another critical step to deter-
mine the data locality and communication patterns. Conventional
dataflow mapping [4, 10, 40] only targets a single model, which
has limited applicability for DGNN models with combined models.
The DGNN dataflow mapping consists of two parts - mapping par-
titioned snapshots and vertices for both RNN and GNN kernels. As
the intermediate data between RNN and GNN is relatively larger,
each tile has both RNN and GNN kernels to accommodate the in-
termediate data to eliminate inter-tile communication. Specifically,
RNN and GNN kernels are duplicated in each row of tiles. As such,
as shown in Figure 6, the example illustrates the data mapping of
snapshots on a 4 X 4 tile array, where Ps and P, are the parallelism
factors for snapshots and vertices. « represents the snapshots as-
signed to distributed tiles, and f represents the vertices assigned to
distributed tiles. Since snapshots are spatially parallelized along the
horizontal direction, horizontally circulating RNN output and GNN
intermediate features could increase data reuse. On the other hand,
vertices in each snapshot are parallelized vertically, aggregating
vertices from remote tiles located in the same column of the tile
array. As such, we restrict the irregular communication patterns
within one dimension of the tile array, preventing worst-case data
transfers proportional to the network diameter.

Based on the dataflow mapping, the reconfigurable interconnect
design is to support both regular and irregular dataflows in DGNN
workloads. As shown Figure 5 (b), the interconnect employs a dual-
layer topology with horizontal links based on a ring topology and
vertical links that combine ring topology with reconfigurable links
(Re-Link). Horizontal ring links handle predictable and regular
communication patterns, including temporal communication and
reuse communication, ensuring low-latency data transfer between
adjacent routers. In contrast, vertical communication leverages the
flexibility of the Re-Link architecture to address the irregular data
exchanges associated with spatial dependencies. Re-Link consists
of simple transistors that dynamically enable or disable bypass
connections between non-adjacent routers, effectively minimizing
signal interference, communication distances, and hop counts.

6.1.2  Proposed Tile and PE Architecture. Each tile integrates the
following components: a distributed buffer, a router interface, a 4
X 4 array of processing elements (PEs), and a reuse First-in-First-
Out (FIFO) buffer, as shown in Figure 5 (c). The tile connects to its

1247

Jiaqi Yang, Hao Zheng, and Ahmed Louri

Table 1: Details of datasets used for evaluation

Datasets Vertices Edges Features Description
PubMed (PM) 1,917 88,648 500 Citation Graph

Reddit (RD) 55,863 858,490 602 Social Graph
Mobile (MB) 340,751 2200203 362 Citation Graph
Twitter (TW) 8,861 119,872 768 Sharing Graph
Wikipedia (WD) 9,227 157,474 172 Citation Graph

Flicker (FK) 2,302,925 | 33,140,017 800 Social Graph

router through a simplified router interface, significantly reducing
complexity and the router’s radix. Internally, the PEs in each tile
are connected using a mesh topology to facilitate intra-tile commu-
nication and computation. The reuse FIFO acts as a double buffer,
supporting inter-PE communication and data exchange between
distributed buffers within the tile. This design minimizes off-chip
memory accesses by enabling inter-tile data reuse, allowing locally-
stored data to be shared efficiently across tiles. Each PE within a
tile comprises a local buffer, a data dispatcher, a MAC array, and
specialized processing units (e.g., ReLU), as depicted in Figure 5 (d).
This design ensures efficient local computation while supporting
flexible data exchange between PEs. The local buffer stores inter-
mediate data, enabling seamless integration with the reuse FIFO
and minimizing reliance on external memory.

7 Evaluation
7.1 Evaluation Setup

Accelerator Simulator : We built a cycle-accurate simulator to
measure the performance of the DiTile-DGNN accelerator. As such,
our simulator can accurately capture the varying graph connectiv-
ity and snapshots as well as their impact on DGNN performance.
We faithfully implemented their respective characteristics and fine-
tuned the models’ performance characteristics to match the perfor-
mance metrics. In order to obtain execution time results, the simu-
lator monitors the number of arithmetic operations and the number
of accesses across the memory hierarchy. The DiTile-DGNN accu-
rately captures the redundancy-free and dynamic parallelization
strategy, balance-aware workload optimization, and distinct sys-
tem configurations. As CommonGraph and MEGA [5, 12] have
identified the high computational overhead associated with graph
deletion operations, we also transform expensive deletion opera-
tions into addition operations by leveraging the mutually inclusive
graph structure across snapshots. The number of arithmetic opera-
tions is used to calculate the computation time, whereas the number
of accesses of each memory hierarchy is used to calculate the com-
munication time. The off-chip communication time is obtained from
the DRAMSim2 simulator[36]. The overall execution time is deter-
mined by overlapping the off-chip communication time with the
on-chip execution time, while accounting for system configuration
overheads and control signal delays. The on-chip execution time is
further refined by overlapping the on-chip communication latency
with the computation latency.

The simulator counts the required amount of on/off-chip commu-
nications and computations, which is used to estimate the related
energy consumption according to the analytical model proposed in
[19]. Additionally, to accurately estimate the area consumption, we



DiTile-DGNN: An Efficient Accelerator for Distributed Dynamic Graph Neural Network Inference

wl 2 2 2 2 2 2

ad & & & & 7 &

S 4 8 4 S & ]

2 # 65.7%

© ? 2

g A ] ] ? 2 ?

1S & 7 &

&% & S M 3

of 2 2

f # ¥ 2 H ] 2

E ) @ —_— g & & M1]33.9%

= + + "

£ ] w m 6.4%

hEd 3 m = 8 2 \;

7 _

5 2 ) 2 & & & S AR 18 A

5 ¢ & ‘

£ [ 2 | 1’: LIAA (] s 2[R e (1]

5& & & & & & &

€~ oo™ boooooowo™ oo oo™ 0o oo™ 0o b0 oobomo o™ 80 oot

¢ TIIFT TIFTIT TITT FTITTT $¥%% TITY $¥%%

£ &8pe digd 8L dggd &L Sigs &isd

L 5 PFE s Y¥E s JF s IE S TE SYE S PE
38 =8 =23 28 L S5 S5
(a)Pm (b)RD (c)mB (W (e)wD (FFK (g)Average

Figure 7: Comparison of the number of arithmetic operations
for each dataset with baseline and proposed algorithms.

used the Synopsys Design Compiler with the TSMC 45 nm standard
library to synthesize and generate the waveform activity file to cap-
ture the dynamic switching activity of the logic gates. We set the
clock frequency at 1 GHz. We use Cacti 6.0 [33] to estimate the area,
power, and access latency of all types of on-chip buffers. Specifically,
we analyzed most of the accelerator components, including PEs, the
controller, on-chip buffers, NoCs, and other hardware components.

Accelerator Modeling : We implemented the DiTile-DGNN
including 16 x 16 tiles interconnected by the proposed reconfig-
urable interconnect. Each tile integrates the following components:
a distributed buffer, a router interface, a 4 X 4 array of PEs, and
a reuse FIFO buffer. Each PE consists of a local buffer, a data dis-
patcher, a router interface, a post-processing unit(PPU), multipliers,
adders, and required logic. Each PE includes a 4 X 4 multiplier
array connected to an accumulation unit with 4 x 4 adders. The
on-chip frequency of the DiTile-DGNN is 700MHz. The distributed
buffer capacity of the DiTile-DGNN is 4MB. The reuse FIFO buffer
capacity is 512KB. The local buffer capacity of each PE is 256KB.

Baselines : We compare the DiTile-DGNN with four GNN
accelerators (ReaDy [20], DGNN-Booster [8], RACE [51], and
MEGA [12]). The baseline accelerators are scaled to be equipped
with the same number of multipliers and off-chip/on-chip band-
width as the DiTile-DGNN.

ReaDy uses a hierarchical architecture consisting of a mesh-
based PE array for both the GNN kernel and RNN kernel and its
computation resources are partitioned according to the workloads
of the kernels. RACE uses an engine-based architecture consisting
of a GNN engine for the GNN kernel and an RNN engine for the
RNN kernel. The PEs are connected by a crossbar in each engine.
Each PE contains a multiplier, an adder, and six MUXes. The compu-
tation resources are divided into two groups with the same number
of PEs for the two engines according to the original configura-
tion. We also resized the baseline accelerators to be equipped with
the same on-chip storage capacity and frequency. ReaDy [20] and
DGNN-Booster [8] employ a recomputation algorithm (Re-Alg) that
fully recomputes all graph data whenever edges or vertices change
over time. In contrast, RACE [51] adopts a redundancy-aware incre-
mental algorithm (Race-Alg), which eliminates overlapping graph
components, such as vertices and edges, between snapshots to re-
duce subsequent computational costs. MEGA [12] addresses the
high computational overhead of graph deletion operations by using
an algorithm (Mega-Alg) that transforms costly deletion operations
into addition operations, leveraging the mutually inclusive graph
structure across snapshots.

1248

ISCA 25, June 21-25, 2025, Tokyo, Japan

6E+7
4E+8
1E+9
6E+7
8E+7
2E+10
3E49

9
§ w - 58.1%
S . & ~ & g @
on = T © < *
2é & Z & 33.5%
- o
s 2 2 _ % [ 6.6%
& & & -
& & & - I
5% T 2 —E u .
g~ 2 N T B =
- - ~
: H ’7 H
2
o2 | g |l 2 ? ? ? 2
o g & & & & &
= C oS oS oo wS oo w© oW &0 b0 8o 80O B0 b0 b0 b0
$TIIT $ITT $IIT TITT T=3 $TITT $II%
2852 2gee2 gge 2862 2es2 22 &8&2
5 ¥E 8§ ¥E s ¥E 5 ¥E 5 ¥E 5 ¥E s ¥E
38 ®=28a =28 L 28 ©38 €38
(a)Pm (b)RD (c)mB (dyTW (e)WD (FIFK (g)Average

Figure 8: Comparison of the number of the DRAM access for
each dataset with baseline and proposed algorithms.

Datasets and Benchmarks: Table 1 illustrates six dynamic
graphs used for evaluation in this paper with the number of ver-
tices and edges [1-3, 15, 35, 37]. We consider one typical DGCN
model [35], including GCN [26] and Long-Short-Term-Memory
(LSTM) models [14]. The 32-bit floating-point representation is
used in the evaluation, which proves to be sufficient for maintain-
ing inference accuracy [24, 39, 45].

7.2 Arithmetic Operation Analysis

Figure7 provides a comparative analysis of arithmetic operations
across various algorithms. The proposed DiTile algorithm achieves
a substantial reduction in redundant computations during DGNN
execution with the classic DGCN model[35]. On average, it reduces
arithmetic operations by 65.7%, 33.9%, and 26.4% across multiple
datasets compared to baseline methods, demonstrating its effec-
tiveness in optimizing computational workloads. The algorithm’s
efficiency stems from several key innovations. Similar to Race-
Alg [51], the DiTile algorithm leverages graph dissimilarities be-
tween snapshots, processing only the evolved graph structures and
avoiding unnecessary recomputation. Additionally, akin to MEGA-
Alg [12], it transforms expensive deletion operations into addition
operations by exploiting the mutually inclusive graph structure
across snapshots, significantly reducing the computational over-
head of dynamic graph updates. Moreover, the RNN kernel within
the DiTile accelerator selectively processes a limited set of out-
put features from the GNN kernel, further reducing unnecessary
computations. These optimizations collectively contribute to the al-
gorithm’s enhanced performance and its ability to efficiently reduce
computational overhead in DGNN execution.

7.3 Off-chip DRAM Access Analysis

Figure 8 presents a comparison of DRAM access volumes for various
algorithms across multiple datasets, where lower values indicate
better performance. The DRAM access volume includes memory
access for weights, adjacency matrix, input features, intermediate
features, and output features. The proposed algorithm consistently
outperforms the baseline approaches, achieving average reductions
in DRAM access of 58.1%, 26.6%, and 33.5%. These results highlight
the proposed algorithm’s effectiveness in significantly reducing
off-chip DRAM access.

The reduction in DRAM access is achieved through several key
strategies. First, the proposed algorithm incorporates an efficient
tiling optimization that partitions the entire graph into appropri-
ately sized subgraphs, minimizing overall DRAM access. Second, the



ISCA 25, June 21-25, 2025, Tokyo, Japan

66.5% 2E+05
2E+05
1E+05 I
1E+05 ‘
1E+05 ‘
8E+04 }
6E+04 "

\

\

60.5% 6E+03

52.6 59.6%

39.1%

SE+03
51.7%
44.5%

31.39

AR

50.2%

(a)Pm

4E+03
5%|

[Ta1.
l 3E403
2E+03 i /.
4E+04
26404

0E+00

Execution Time (Cycles)

|
\

\

|

26404 i

1E403 ‘

Execution Time (Cycles)
Execution Time (Cycles)
Execution Time (Cycles)

:

ReaDy
DGNN-Booster
RACE
MEGA
DiTile-DGNN
ReaDy _
DGNN-Booster
RACE
MEGA
DiTile-DGNN [N
H
DGNN-Booster
IQ—
i
i
DiTile-DGNN !

(b)RD (c)mB

ReaDy

DGNN-Booster

53.3%

46.

Jiaqi Yang, Hao Zheng, and Ahmed Louri

2E+06
2E+06
2E+06
1E+06
1E+06
1E+06

4E+05
4E+05
3E+05
3E+05
2E+05
2E+05
1E+05
5E+04

52.7%
M) 47.9%
41.2%

J 28.2

©
°
&

56.1%

)
]
g
&

3% 44.9%

29.0 36.1%

I,

(g)Average

3E+03

2E+03
4E+05

2E+05

Execution Time (Cycles)

e ———

Execution Time (Cycles)

\
|
|
6E+05 }
|
I

Execution Time

88

:i

0E+00

ReaDy

DGNN-Booster
RACE

RACE

MEGA

RACE

.
H N
r:\ N
;

pitile-DGNN [

RACE
MEGA
DiTile-DGNN
MEGA
DiTile-DGNN [
ReaDy
DGNN-Booster
DGNN-Booster
MEGA
DiTile-DGNN

(dyw (e)wp (fFK

Figure 9: Execution time comparison of ReaDy, DGNN-Booster, RACE, MEGA, and DiTile-DGNN for different datasets.

3 1.07 109 5% o3
1.05 105 "
1.04 % 112
L0 1.03 - 109 110 309
w1007 1oo 1ooJ 1.00[ |1.001)1.00 100]r Ea b7 2P M 06
I — -
g S
2 §-
2 €
=3 2
33 b ‘ P
ggnggggggggggﬁ 5555555555655
$I5353E3535909 8 1i33EiEiEiE
§ & & & & & 8 2 & 2 <& 2 <
PM RD MB TW WD FK AVG - PM RD MB TW WD FK A
(a) (b)

Figure 10: (a)Comparison of the normalized estimated off-
chip DRAM access and actual DRAM access(Normalized to
the estimated off-chip DRAM access) (b)Comparison of the
normalized estimated on-chip data transfer and actual on-
chip data transfer(Normalized to the estimated on-chip data
transfer).

proposed redundancy-free dynamic parallelization strategy elimi-
nates unnecessary redundant DRAM access by focusing exclusively
on necessary computations, thereby further reducing memory traf-
fic. Third, the proposed workload balance optimization ensures
even data distribution across distributed tiles, enhancing on-chip
memory utilization and maximizing data reuse. Together, these
optimizations not only reduce off-chip memory access but also
improve overall computational efficiency.

In contrast, baseline methods such as Re-Alg, Race-Alg, and
Mega-Alg show notable limitations. Re-Alg performs repetitive
computations for all snapshots without optimizing the redundancy
elimination process, resulting in substantial redundant DRAM ac-
cess. Race-Alg improves upon Re-Alg by eliminating redundant
computations for vertices with identical output and intermediate
features of the GNN kernel across snapshots. Mega-Alg reduces
some redundant computations by addressing vertices with identical
output features across snapshots but does not address redundancies
related to intermediate features. Moreover, none of the baselines
optimize the graph tiling process, and uneven data distribution
across tiles continues to limit on-chip memory utilization, leading
to increased DRAM access. Overall, the proposed algorithm’s com-
bination of efficient tiling, redundancy elimination, and workload
balancing offers a robust solution for minimizing DRAM access.

7.4 Performance Analysis

Figure 9 illustrates the execution time of the DiTile-DGNN com-
pared to previous approaches, measured by the total number of

\"/

9%

Actual-OT

(1]

1249

execution cycles. Baseline architectures, ReaDy and DGNN-Booster

103 employ the Re-Alg, RACE utilizes the Race-Alg, and MEGA adopts

the Mega-Alg. The overall execution time includes overlapping off-
chip communication with on-chip execution while considering sys-
tem configuration overheads and control signal delays. The DiTile-
DGNN achieves significant performance improvements, with an
average execution time reduction of 48.4%, 56.1%, 23.2%, and 36.1%
across multiple GNN datasets compared to the baselines. These
enhancements are attributed to three main factors: reduced com-
putation, optimized off-chip communication, and efficient on-chip
communication.

The reduction in computation is achieved through the proposed
redundancy-free dynamic parallelization strategy, which eliminates
redundant operations and reduces overall computational complex-
ity. By focusing on necessary computations, the algorithm mini-
mizes unnecessary processing overhead, contributing directly to
reduced execution cycles. The off-chip communication optimiza-
tion is realized by eliminating all memory transactions unrelated
to graph updates between consecutive snapshots. Moreover, the
graph tiling technique divides the entire graph into appropriately
sized subgraphs, reducing the overall DRAM access and ensuring
efficient memory utilization. The on-chip communication efficiency
is enhanced through three complementary strategies. First, the pro-
posed parallelism optimization identifies efficient parallelization
strategies and parallel factors to reduce costly inter-tile communica-
tion. To assess how closely DiTile-DGNN approaches the estimated
data transfers, we performed a detailed comparison of estimated
and actual data movement with WD dataset. The estimated data
movement refers to values calculated from our analytical model.
We compare the normalized estimated off-chip DRAM access (Alg-
DA) with the actual off-chip DRAM access (Actual-DA). As shown
in Figure 10 (a), the actual off-chip access exceeds the estimated
minimum by only 5% on average. This is because, in theory, we
assume that subgraphs within the same snapshot share identical
sparsity characteristics, whereas in practice, sparsity variations
exist across subgraphs. We also compare the normalized estimated
on-chip data transfer (Alg-OT) and actual on-chip data transfer
(Actual-OT). The results shown in Figure 10 (b) indicate that the
actual on-chip data transfer exceeds the estimated lower bound by
9% on average. This is due to the theoretical assumption that sub-
graphs across snapshots contain identical numbers of vertices and
edges, whereas, in practice, even highly similar snapshots exhibit
slight variations in graph structure. Second, the proposed work-
load balance optimization ensures balanced workload distribution



DiTile-DGNN: An Efficient Accelerator for Distributed Dynamic Graph Neural Network Inference

g

1E+04

68.8% 1.05E+04

11.0% -
80% 0116'4% Izs.s% B 16404
g _25.8%41.9%| s
= = 8E+03 45.9%
§ g 38.9% 23,095 04E03
.’E 3.5 % 94.5% = 6E+03 5356403 18.9% ,5.c0s
£ 4% [T 7BA% g, 70.7% 5 4.03E+03 12.0%
2 5 g 4603 3268403 g 3716403
W 20% 3
& 26403
% ]
Iy & § s ) z o0 |10 s s 2 s 3
3 I
& § & H ] 8 : § & ¢ £ & ¢
2 z z € =
: = E 2 2 S £ o
E 1= % 5
o aQ E
e o
(a) (b)

Figure 11: (a)PE utilization and (b)Execution time compar-
ison of DiTile-DGNN vs. baseline variants—NoPs (without
parallelism strategy), NoWos (without workload optimiza-
tion), NoRa (without reconfigurable architecture), OnlyPs
(only parallelism strategy), OnlyWos (only workload opti-
mization), and OnlyRa (only reconfigurable architecture).

across tiles and minimizes synchronization overhead. Third, the
reconfigurable interconnect design provides scalable and flexible
communication tailored for DGNN workloads. This approach mini-
mizes hop counts, signal interference, and communication latency,
ensuring adaptability to varying workload demands.

The proposed design DiTile-DGNN performs 1.9-2.5X better
than ReaDy, 1.7-2.7X better than DGNN-Booster, 1.3-3.0X better
than RACE, and 1.6-2.1X better than MEGA. The performance gain
on the PubMed dataset is more significant when compared to other
datasets, because the vertex-to-edge ratio in PubMed is smaller
than that of other datasets. This could result in a more significant
workload imbalance between GNN (depending on vertex and edge
count) and RNN (depending on vertex count only) kernels. In such
a case, RACE, employing a heterogeneous architecture, suffer from
such a significant workload imbalance issue.

To evaluate the computational efficiency of DiTile-DGNN, we
analyze its PE utilization and compare it with baseline accelera-
tors. Our results shown in Figure 11 (a) indicate that DiTile-DGNN
achieves a 23.8% average improvement in PE utilization over base-
line accelerators on WD dataset. This improvement stems from
two key factors: homogeneous architecture and proposed work-
load optimization strategy. The uniform design of our compute
tiles allows for a more balanced workload distribution, reducing
idle cycles and enhancing overall PE usage. By dynamically ad-
justing workload mapping, our accelerator effectively mitigates
load imbalance caused by varying graph sparsity, ensuring consis-
tently high utilization. These findings highlight the effectiveness
of our architectural choices and workload management strategies
in maximizing hardware efficiency.

7.5 Ablation Study

To evaluate the effectiveness of the proposed contributions in en-
hancing performance, we conduct an ablation study by incremen-
tally removing or isolating each component of our design. The
three key contributions include: proposed parallelism strategy, pro-
posed workload optimization strategy, and proposed reconfigurable
distributed-tiled accelerator architecture. We compare the execu-
tion time of our DiTile-DGNN accelerator against six baseline
variants: DiTile-DGNN without the parallelism strategy (NoPs),

1250

ISCA 25, June 21-25, 2025, Tokyo, Japan

84.0%

6.26
83.4% 75.6%
4.10

DiTile-DGNN [

S10
S
ﬁB
@ s
5 6.01 71.4%
24 3.50
£
: ] i Hied. SREY. UisE
2 1 — 0L LT ) 1
So (=] g EE [m] | =]

>rwgZ 2HWCZ 2LWLZ >rWLZ >ErWLZ >EWLZ >Lwa
@ 358§z B5YFzZ 2zYgz 3z¥gs 3EUEZ 3E8FZ 3E¥E

o < © < o < © < o < o < o <
g ZExSR $8x:zB $8x3B 28=38 g8xs8 f8x:5B fg=%
w @ K3 2 2 @ 2 2 K @ 2 2 K} 2

2 E z E 2 E z E 2 E z E 2
§E § & § s § & § & g s & 5 g
2 o o o [=] o [=] o

(a)pPm (b)RD (c)mB (d)yTW (e)wD (f)FK (g)Average

™ C i @ Off-chip C [ On-chip Communication ® Control and Configuration

Figure 12: Comparison of the Normalized Energy Consump-
tion Breakdown for different datasets (Normalized to the
energy consumption of the DiTile-DGNN).

DiTile-DGNN without the workload optimization strategy (NoWos),
DiTile-DGNN without the reconfigurable architecture (NoRa), an
accelerator implementing only the parallelism strategy (OnlyPs), an
accelerator implementing only the workload optimization strategy
(OnlyWos), and an accelerator implementing only the reconfig-
urable architecture (OnlyRa). Figure 11 (b) presents the execution
time comparison, demonstrating the impact of each component on
overall performance. Compared to DiTile-DGNN, removing the par-
allelism strategy (NoPs) results in a 38.9% increase in execution time,
indicating that efficient data reuse and minimized off-chip/on-chip
communication play a crucial role in accelerating DGNN compu-
tations. The absence of workload optimization (NoWos) increases
execution time by 18.9%, highlighting the importance of evenly dis-
tributing workloads to avoid underutilization of computational re-
sources. Eliminating the reconfigurable architecture (NoRa) results
in a 12.0% execution time increase, suggesting that flexible inter-
connects significantly reduce communication bottlenecks. Among
the individual components, OnlyPs, OnlyWos, and OnlyRa increase
execution time by 23.0%, 45.9%, and 68.8%, respectively. These re-
sults indicate that while each contribution independently enhances
performance, their combined effect in DiTile-DGNN achieves the
best efficiency. Notably, the standalone reconfigurable architecture
(OnlyRa) yields the highest execution time increase, underscoring
the necessity of jointly optimizing both computation and communi-
cation. This ablation study confirms that the proposed parallelism
strategy, workload optimization, and reconfigurable architecture
collectively contribute to significant performance improvements.
Their integration in DiTile-DGNN ensures efficient parallel execu-
tion, balanced workloads, and scalable communication, making it
well-suited for dynamic graph workloads.

7.6 Energy Efficiency Analysis

In the energy analysis, we assess the total energy consumption of
the entire execution process, encompassing computation, on-chip
communication, off-chip communication, and control and configu-
ration overheads. Figure 12 provides a breakdown of the normalized
energy consumption for the DiTile-DGNN compared to baseline
approaches. The DiTile-DGNN demonstrates significant energy sav-
ings, achieving average reductions of 83.4%, 84.0%, 75.6%, and 71.4%
across multiple datasets compared to the baselines. These values,
normalized to the energy consumption of the DiTile-DGNN, under-
score its improved energy efficiency. The primary contributors to



ISCA 25, June 21-25, 2025, Tokyo, Japan

»

65.8%
2.92

w

41.9%
172

33.8%
151

] 2.05

]

ReaDy
=

DiTile-DGNN

RACE ]
MecA [
RACE ]

MEGA N

Norm. Execution Time
o kN
ReaDy
DGNN-Booster
RACE
meca I
Average —
DiTile-DGNN
DGNN-Booster
Average
DiTile-DGNN
ReaDy
DGNN-Booster
Average ]
DGNN-Booster

0-5% 5%-10% 10%-15% Average

Figure 13: The sensitivity study of graph dissimilarity pro-
portion between consecutive snapshots for the proposed and
baseline accelerators (Normalized to the execution time of
the DiTile-DGNN with same graph dissimilarity proportion).

these energy savings include reduced DRAM access, decreased com-
putation, minimized inter-tile communication, and reduced on-chip
communication latency. These improvements are driven by several
key strategies, including the proposed redundancy-free dynamic
parallelization strategy, the proposed workload balance optimiza-
tion, and the reconfigurable NoC design, as detailed previously.
Furthermore, the energy consumption for control and configura-
tion accounts for less than 7% of the total energy consumption,
reflecting the effectiveness of the proposed design in minimizing
system overheads. In summary, the combination of reduced mem-
ory access, optimized computation, and efficient communication
strategies establishes the DiTile-DGNN as a highly energy-efficient
solution for DGNN workloads. This holistic approach ensures sub-
stantial energy savings without compromising performance.

7.7 Sensitivity Analysis

Since the proportion of dissimilarity between consecutive snap-
shots varies from 4.1% to 13.3%[51], we adjusted this proportion
to demonstrate that DiTile-DGNN consistently outperforms base-
line accelerators across different levels of dissimilarity. Figure13
illustrates the normalized execution time as the proportion of dis-
similarity between consecutive snapshots increases from 0% to 15%
using the Wikipedia dataset. The execution time of the baseline ac-
celerators is normalized to the execution time of the DiTile-DGNN
at the same graph dissimilarity ratio. The DiTile-DGNN achieves
execution time reductions of 65.8%, 41.9%, and 33.8% compared
to the baselines as the dissimilarity proportion changes from 0%-
5%, 5%-10%, and 10%-15%, respectively. Although the performance
speedup of DiTile-DGNN decreases as dissimilarity decreases, the
proposed algorithm continues to eliminate a substantial number of
redundant computations and communications while significantly
reducing on-chip and off-chip communication consumption com-
pared to prior approaches. From this study, we conclude that the
performance gains of our proposed algorithm diminish as the dis-
similarity increases, but DiTile-DGNN remains highly effective
across varying levels of graph dissimilarity.

7.8 Area Consumption Analysis

Figure14 (a) shows the breakdown of the overall area of the DiTile-
DGNN. This includes the tiles, on-chip buffer, reconfigurable in-
terconnects, and logic components for control and configuration.

1251

DiTile-DGNN

Jiaqi Yang, Hao Zheng, and Ahmed Louri

W Tiles

Reconfigurable NoC
On-chip Buffer ™ Logic Components

N\NFIFO Buffer 8 Distributed Buffer
N Mesh = PE ¥ Control Logic

(b) Tile

WEMAC ® Local Buffer
## PPU “~ Logic Components

(a) Overall (c) PE

Figure 14: (a) Area breakdown of the DiTile-DGNN, (b) the
proposed tile, and (c) the proposed PE

The tile array accounts for 77.8% of the total chip area. The on-chip
buffer makes up 15.7% of the chip area. The reconfigurable intercon-
nect uses 5.6% of the chip area. The controller’s area consumption
is negligible at 0.9% of the total chip area. Figure14 (b) provides
a breakdown of area consumption for the proposed Tile. The PE
array accounts for 60.5% of the total PE area, while the distributed
buffer and reuse FIFO buffer account for 28.4% and 8.1% respectively.
The mesh topology that connected the PE array account for 2.3%
and router reconfigurable Muxes and local control logic have a
negligible area consumption of 0.7% of the total tile area. Figure14
(c) provides a breakdown of area consumption for the proposed
PE. The MACs array accounts for 59.4% of the total PE area, while
the local buffer account for 23.8%. The local control logic have a
negligible area consumption of 2.0% of the total PE area.

8 Conclusion

In this paper, we propose DiTile-DGNN, an efficient accelerator
for large-scale DGNN execution. The proposed DiTile-GNN con-
sists of a redundancy-free parallelism strategy, workload balance
optimization, and a reconfigurale accelerator architecture. Specifi-
cally, we propose a redundancy-free framework that can efficiently
find an efficient parallelism strategy that can fully eliminate the
data redundancy between graph snapshots while minimizing the
communication complexity. Additionally, we propose a workload
balance optimization for combined GNN and DGNN models to en-
hance resource utilization and eliminate synchronization overhead
between snapshots. Lastly, we propose a reconfigurable accelerator
architecture, with a flexible interconnect, that can be dynamically
configured in support of various DGNN dataflows. Our simula-
tions demonstrate that DiTile-DGNN achieves 48.4%, 56.1%, 23.2%,
and 36.1% reductions in execution time and 83.4%, 84.0%, 75.6%,
and 71.4% improvements in energy efficiency compared to state-
of-the-art accelerators, including ReaDy [20], DGNN-Booster [8],
RACE [51], and MEGA [12], on average across multiple DGNN
datasets. These results highlight the strength of our algorithm-
architecture co-optimization approach, establishing DiTile-DGNN
as a robust and scalable solution for efficient DGNN execution.

Acknowledgments

This research was partially supported by NSF grants CCF-1901165,
CCF-195398, CCF-2131946, CCF-1901165, CCF-2441973, and CNS-
2321224. We sincerely thank the anonymous reviewers for their
excellent and constructive feedback.



DiTile-DGNN: An Efficient Accelerator for Distributed Dynamic Graph Neural Network Inference

References

(1]

(2]
(3]

[4
5

8

=

[9

=

[10

—
—

[12]

[13

[21

[22

[23]

[24

[25

[26]

[n. d.]. Flickr. Retrieved from https://www.kaggle.com/datasets/hsankesara/flickr-
image-dataset. Accessed: 2024.

[n.d.]. Mobile. Retrieved from https://dblp.uni-trier.de/xml/. Accessed: 2024.
[n. d.]. Wikidata. Retrieved from https://github.com/mniepert/mmkb/tree/master/
TemporalKGs/wikidata. Accessed: 2024.

2017. NVDLA Deep Learning Accelerator. http://nvdla.org

Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta.
2023. Commongraph: Graph analytics on evolving data. In Proceedings of the ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Vol. 2. 133-145.

Pete Burnap, Omer F Rana, Nick Avis, Matthew Williams, William Housley, Adam
Edwards, Jeffrey Morgan, and Luke Sloan. 2015. Detecting tension in online
communities with computational Twitter analysis. Technological Forecasting and
Social Change 95 (2015), 96-108.

Venkatesan T Chakaravarthy, Shivmaran S Pandian, Saurabh Raje, Yogish Sab-
harwal, Toyotaro Suzumura, and Shashanka Ubaru. 2021. Efficient scaling of
dynamic graph neural networks. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1-15.
Hangqiu Chen and Cong Hao. 2023. Dgnn-booster: A generic fpga accelerator
framework for dynamic graph neural network inference. In Proceedings of the IEEE
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). 195-201.

Jinyin Chen, Xueke Wang, and Xuanheng Xu. 2022. GC-LSTM: Graph convolution
embedded LSTM for dynamic network link prediction. Applied Intelligence (2022),
1-16.

Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2016. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE journal of solid-state circuits 52, 1 (2016), 127-138.

Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale.
VLDB Endowment 8, 12 (2015), 1804-1815.

Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta.
2023. MEGA Evolving Graph Accelerator. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture. 310-323.

Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie, Haoran You,
Martin Herbordt, Yingyan Lin, and Ang Li. 2021. I-GCN: A graph convolutional
network accelerator with runtime locality enhancement through islandization.
In In proceedings of IEEE/ACM international symposium on microarchitecture.
1051-1063.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins. 2000. Learning to forget:
Continual prediction with LSTM. Neural Computation 12, 10 (2000), 2451-2471.
Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. Dyngem: Deep em-
bedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018).
Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. 2022. DynaGraph:
dynamic graph neural networks at scale. In Proceedings of the ACM SIGMOD
Joint International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA). 1-10.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in Neural Information Processing Systems 30
(2017).

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
Computation 9, 8 (1997), 1735-1780.

Mark Horowitz. 2014. Energy table for 45nm process. In Stanford VLSI wiki.

Yu Huang, Long Zheng, Pengcheng Yao, Qinggang Wang, Haifeng Liu, Xiaofei
Liao, Hai Jin, and Jingling Xue. 2022. Ready: A ReRAM-based processing-in-
memory accelerator for dynamic graph convolutional networks. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 41, 11 (2022),
3567-3578.

Ajay Kumar Jaiswal, Shiwei Liu, Tianlong Chen, Ying Ding, and Zhangyang
Wang. 2023. Graph ladling: Shockingly simple parallel gnn training without
intermediate communication. In International Conference on Machine Learning.
PMLR, 14679-14690.

Guangyin Jin, Lingbo Liu, Fuxian Li, and Jincai Huang. 2023. Spatio-temporal
graph neural point process for traffic congestion event prediction. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 37. 14268-14276.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation learning for dynamic
graphs: A survey. Journal of Machine Learning Research 21, 70 (2020), 1-73.
Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation learning for dynamic
graphs: A survey. Journal of Machine Learning Research 21, 70 (2020), 1-73.
Samira Khodabandehlou and Alireza Hashemi Golpayegani. 2024. FiFrauD: unsu-
pervised financial fraud detection in dynamic graph streams. ACM Transactions
on Knowledge Discovery from Data 18, 5 (2024), 1-29.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

1252

[27]

[28

[29

[30

[31

[32

[33

[34

@
2

[36

(37]

[38

[40

[41

[42

[44

[45

[46]

[47

(48

[49]

ISCA 25, June 21-25, 2025, Tokyo, Japan

N Laptev and S Amizadeh. 2015. Yahoo anomaly detection dataset s5. URL
http://webscope. sandbox. yahoo. com/catalog. php (2015).

Kai Lei, Meng Qin, Bo Bai, Gong Zhang, and Min Yang. 2019. GCN-GAN: A
non-linear temporal link prediction model for weighted dynamic networks. In
Proceedings of the IEEE Conference on Computer Communications (INFOCOM).
388-396.

Hongxi Li, Zuxuan Zhang, Dengzhe Liang, and Yuncheng Jiang. 2024. K-Truss
Based Temporal Graph Convolutional Network for Dynamic Graphs. In Asian
Conference on Machine Learning. PMLR, 739-754.

Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. 2021. GCNAX: A
flexible and energy-efficient accelerator for graph convolutional neural networks.
In 2021 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 775-788.

Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei, Dawen Xu, and
Xiaowei Li. 2020. EnGN: A high-throughput and energy-efficient accelerator for
large graph neural networks. IEEE Trans. Comput. 70, 9 (2020), 1511-1525.
Osman Asif Malik, Shashanka Ubaru, Lior Horesh, Misha E Kilmer, and Haim
Avron. 2021. Dynamic graph convolutional networks using the tensor M-product.
In Proceedings of the SIAM International Conference on Data Mining (SDM). 729~
737.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to understand large caches. University of Utah and Hewlett
Packard Laboratories, Tech. Rep 147 (2009).

George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis. 2021.
Transfer graph neural networks for pandemic forecasting. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 35. 4838-4845.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. 2020. Evolvegcen:
Evolving graph convolutional networks for dynamic graphs. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 34. 5363-5370.

Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A cycle
accurate memory system simulator. IEEE Computer Architecture Letters 10, 1
(2011), 16-19.

Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with inter-
active graph analytics and visualization. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 29.

Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A Boncz, et al.
2021. The future is big graphs: a community view on graph processing systems.
Commun. ACM 64, 9 (2021), 62-71.

Youngjoo Seo, Michaél Defferrard, Pierre Vandergheynst, and Xavier Bresson.
2018. Structured sequence modeling with graph convolutional recurrent net-
works. In Proceeding of the International Conference. Springer, 362-373.

Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. 2019. Simba: Scaling deep-learning inference with multi-
chip-module-based architecture. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 14-27.

Lubos Takac and Michal Zabovsky. 2012. Data analysis in public social networks.
In Proceeding of the International Scientific Conference and International Workshop
Present Day Trends of Innovations, Vol. 1.

Stylianos I Venieris, Christos-Savvas Bouganis, and Nicholas D Lane. 2022. Multi-
DNN accelerators for next-generation Al systems. arXiv preprint arXiv:2205.09376
(2022).

Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. 2022. Bns-gcn:
Efficient full-graph training of graph convolutional networks with partition-
parallelism and random boundary node sampling. arXiv preprint arXiv:2203.10983
(2022).

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin
Zhang, Dongrui Fan, and Yuan Xie. 2020. Hygcen: A gen accelerator with hy-
brid architecture. In Proceeding of the IEEE International Symposium on High
Performance Computer Architecture (HPCA). 15-29.

Hongxia Yang. 2019. Aligraph: A comprehensive graph neural network plat-
form. In Proceedings of the ACM SIGKDD International Conference on knowledge
Discovery & Data Mining. 3165-3166.

Jiaqi Yang, Hao Zheng, and Ahmed Louri. 2024. Aurora: A Versatile and Flexible
Accelerator for Graph Neural Networks. In 2024 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 890-902. https://doi.org/10.1109/
IPDPS57955.2024.00084

Jiaqi Yang, Hao Zheng, and Ahmed Louri. 2025. -DGNN: A Graph Dissimilarity-
based Framework for Designing Scalable and Efficient DGNN Accelerators. In
2025 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 1038-1051. https://doi.org/10.1109/HPCA61900.2025.00081

Fangzhou Ye, Lingxiang Yin, Amir Ghazizadeh Ahsaei, and Hao Zheng. 2024.
EGMA: Enhancing Data Reuse and Workload Balancing in Message Passing
GNN Acceleration via Gram Matrix Optimization. In Proceedings of the 61st
ACM/IEEE Design Automation Conference (San Francisco, CA, USA) (DAC ’24).


https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://dblp.uni-trier.de/xml/
https://github.com/mniepert/mmkb/tree/master/TemporalKGs/wikidata
https://github.com/mniepert/mmkb/tree/master/TemporalKGs/wikidata
http://nvdla.org
https://doi.org/10.1109/IPDPS57955.2024.00084
https://doi.org/10.1109/IPDPS57955.2024.00084
https://doi.org/10.1109/HPCA61900.2025.00081

ISCA 25, June 21-25, 2025, Tokyo, Japan

Association for Computing Machinery, New York, NY, USA, Article 304, 6 pages.
https://doi.org/10.1145/3649329.3655962

Lingxiang Yin, Sanjay Gandham, Mingjie Lin, and Hao Zheng. 2024. SCALE:
A Structure-Centric Accelerator for Message Passing Graph Neural Networks.
In 2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO).
580-593. https://doi.org/10.1109/MICRO61859.2024.00050

Hui Yu, Yu Zhang, Jin Zhao, Yujian Liao, Zhiying Huang, Donghao He, Lin Gu,
Hai Jin, Xiaofei Liao, Haikun Liu, et al. 2023. RACE: An Efficient Redundancy-
aware Accelerator for Dynamic Graph Neural Network. ACM Transactions on
Architecture and Code Optimization 20, 4 (2023), 1-26.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2019. T-gen: A temporal graph convolutional network for traffic
prediction. IEEE Transactions on Intelligent Transportation Systems 21, 9 (2019),
3848-3858.

Yingnan Zhao, Ke Wang, and Ahmed Louri. 2024. OPT-GCN: A Unified and
Scalable Chiplet-Based Accelerator for High-Performance and Energy-Efficient

1253

Jiaqi Yang, Hao Zheng, and Ahmed Louri

GCN Computation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 43, 12 (2024), 4827-4840. https://doi.org/10.1109/TCAD.
2024.3401543

Yingnan Zhao, Ke Wang, Jiaqi Yang, and Ahmed Louri. 2024. An Efficient Hard-
ware Accelerator Design for Dynamic Graph Convolutional Network (DGCN)
Inference. In Proceedings of the 61st ACM/IEEE Design Automation Conference
(San Francisco, CA, USA) (DAC °24). Association for Computing Machinery, New
York, NY, USA, Article 324, 6 pages. https://doi.org/10.1145/3649329.3658254
Fan Zhou, Xovee Xu, Ce Li, Goce Trajcevski, Ting Zhong, and Kunpeng Zhang.
2020. A heterogeneous dynamical graph neural networks approach to quantify
scientific impact. arXiv preprint arXiv:2003.12042 (2020).

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and
Jingren Zhou. 2019. Aligraph: A comprehensive graph neural network platform.
arXiv preprint arXiv:1902.08730 (2019).


https://doi.org/10.1145/3649329.3655962
https://doi.org/10.1109/MICRO61859.2024.00050
https://doi.org/10.1109/TCAD.2024.3401543
https://doi.org/10.1109/TCAD.2024.3401543
https://doi.org/10.1145/3649329.3658254

	Abstract
	1 Introduction
	2 Background
	2.1 Dynamic Graph Representation
	2.2 Discrete-Time Dynamic Graph Neural Network

	3 Motivation
	3.1 Pitfalls of Existing DGNN Parallelization Strategies

	4 Redundancy-free Dynamic Parallelization Strategy for Distributed DGNN Acceleration
	4.1 Proposed DGNN Matrix Tiling
	4.2 Proposed DGNN Parallelism Optimization

	5 Proposed Workload Balance Optimization
	6 Proposed Accelerator Overview
	6.1 Reconfigurable and Distributed Tile Array

	7 Evaluation
	7.1 Evaluation Setup
	7.2 Arithmetic Operation Analysis
	7.3 Off-chip DRAM Access Analysis
	7.4 Performance Analysis
	7.5 Ablation Study
	7.6 Energy Efficiency Analysis
	7.7 Sensitivity Analysis
	7.8 Area Consumption Analysis

	8 Conclusion
	Acknowledgments
	References

