
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

I-DGNN: A Graph Dissimilarity-based Framework
for Designing Scalable and Efficient DGNN

Accelerators
Jiaqi Yang†, Hao Zheng‡, and Ahmed Louri†

George Washington University†, University of Central Florida‡
Yang Jiaqi Cute@gwu.edu, Hao.Zheng@ucf.edu, and louri@gwu.edu

Abstract—Dynamic Graph Neural Networks (DGNNs) have
recently been used in numerous application domains, compre-
hending the intricate dynamics of time-evolving graph data.
Despite their theoretical advancements, effectively implementing
scalable DGNNs continues to be a formidable challenge due to the
constantly evolving graph data and heterogeneous computation
kernels. Recent efforts attempted to either exploit the graph
data reuse to reduce memory access or eliminate the redundant
computations between consecutive graph snapshots to scale the
DGNN acceleration. These efforts are still falling short. In prior
work, each graph snapshot, regardless of its size and connectivity,
passes through the entire DGNN computation pipeline from layer
to layer. Consequently, substantial intermediate data is generated
throughout the DGNN computation, which leads to excessive off-
chip memory access.

To address this crucial challenge, we argue that the computa-
tions between evolving graph snapshots should be decoupled from
the DGNN execution pipeline. In this paper, we propose I-DGNN,
a theoretical, architectural, and algorithmic framework with the
aim of designing scalable and efficient accelerators for DGNN
execution with improved performance and energy efficiency. On
the theory side, the key idea is to identify essential computations
between consecutive graph snapshots and encapsulate them as
a separate kernel independent from the DGNN model. Specif-
ically, the proposed one-pass DGNN computing model extracts
the process of graph update as a chained matrix multiplica-
tion between evolving graphs through rigorous mathematical
derivations. Consequently, consecutive snapshots utilize a one-
pass computation kernel instead of passing through the entire
DGNN execution pipeline, thereby eliminating the costly data
movement of intermediate results across DGNN layers. On the
architecture side, we propose a unified accelerator architecture
that can be dynamically configured to support the computation
characteristics of the proposed I-DGNN computing model with
improved data and pipeline parallelism. On the algorithm side,
we propose a new dataflow and mapping tailored for I-DGNN
to further improve the data locality of inter-kernel data across
the DGNN pipeline. Simulation results show that the proposed
accelerator achieves 65.9%, 71.1%, and 58.8% reductions in
execution time and 88.4%, 87.0%, and 85.9% improvements
in energy efficiency on average across multiple DGNN datasets
compared to state-of-the-art-accelerators [1]–[3].

I. INTRODUCTION

Dynamic Graph Neural Network (DGNN) models [4], [5]
have recently emerged as a promising solution to understand
the temporary and spatial relationship between entities in time-
evolving graphs [6]–[9]. Theoretically, the success of DGNN
models is driven by the combined use of graph neural networks
(GNNs) and recurrent neural networks (RNNs), enabling the

Updated
snapshot

Input Features
Dissimilarity

Dissimilarity

Graph 
structure

Input 
features

Part of input 
features

Part of input 
features

⋯

⋯

Intermediate features
of the last snapshot

⋯

GNN kernel

GNN kernel

GNN kernel

One-pass

RNN
Kernel

⋯
Output
features

RNN
Kernel

⋯
Output
features

RNN
Kernel

⋯
Output
features

⋯
Final 

features

⋯
Final 

features

⋯
Final 

features

(a) Recomputing graph algorithm

(b) Incremental graph algorithm

(c) I-DGNN algorithm

Graph 
structure

A

B

D C

E

A

B

D C

E

A

B

D C

E

E

La
y

er
1

La
y

er
2

La
y

er
3

La
y

er
1

La
y

er
2

La
y

er
3

Fu
se

d
La

y
er

Fig. 1. The illustrative example of (a) Recomputing graph algorithm, (b)
Incremental graph algorithm, and (c) I-DGNN algorithm.

learning capability of understanding both structural and tem-
poral dynamics [10]. However, such a heterogeneous learning
model, coupled with the evolving graph data, inevitably in-
creases the computation complexity and memory overheads.

Recent efforts have proposed several accelerators to im-
plement DGNNs [1], [2], [11]. However, the graph similar-
ity between evolving graphs is not well exploited in these
studies. For example, ReaDy [1] and DGNN-Booster [2]
follow traditional GNN optimization techniques to exploit
graph data reuse, thus reducing redundant computation and
off-chip memory access. However, both ReaDy and DGNN-
Booster process entire graph snapshots over time, despite
the fact that graphs generally evolve gradually, with high
similarity between consecutive snapshots [12]. This has led to
redundant computations and off-chip memory access between
graph snapshots.

To address the redundant computations between graph
snapshots, recent work [3] proposed an incremental com-
puting graph algorithm. This algorithm only processes the
evolved components of the graph, such as changed vertices
and edges, to understand the influence of temporal rela-
tionships between graph entities. Even though the proposed
incremental computing approach can significantly reduce the
redundant computations between snapshots, the updated graph
components, regardless of the size and connectivity, still go
through the entire DGNN execution pipeline from layer to
layer. This comes with extra storage overhead and memory
access due to the duplicated intermediate data. For instance,
the intermediate data from consecutive snapshots should be
simultaneously retained to update the final output of GNN
kernels at each layer. Given that the size of the intermediate
data is proportional to the graph size and the depth of the

1038

2025 IEEE International Symposium on High Performance Computer Architecture (HPCA)

979-8-3315-0647-6/25/$31.00 ©2025 IEEE 
DOI 10.1109/HPCA61900.2025.00081

20
25

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
H

ig
h 

Pe
rf

or
m

an
ce

 C
om

pu
te

r A
rc

hi
te

ct
ur

e 
(H

PC
A

) |
 9

79
-8

-3
31

5-
06

47
-6

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

H
PC

A
61

90
0.

20
25

.0
00

81

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



GNN model, this duplication would significantly increase off-
chip memory access.

In this paper, we argue that incremental computing should
be decoupled from the DGNN execution pipeline due to the
costly intermediate data overheads. Our key idea is to utilize
classic graph theory, adjacency matrix powers, to identify the
essential computations between graph snapshots in multi-layer
DGNN models. This enables the precise encapsulation of the
receptive field of GNNs affected by the evolving graphs. As
shown in Figure1, the identified computations are developed
as a one-pass computation model, as opposed to a multi-layer
DGNN pipeline. Consequently, the evolved graph components
no longer go through the entire DGNN pipeline. This can
ensure the mathematical equivalence for capturing temporal
relationships between consecutive snapshots while eliminating
costly intermediate data duplication. Specifically, this paper
makes the following contributions:

• On the theory side, we utilize graph theory, adjacency
matrix powers, to develop a one-pass computation model
that can efficiently capture the dynamics between graph
snapshots without the need to execute the entire DGNN
pipeline. The proposed model transforms a multi-layer
GNN model to a computation kernel only involving the
adjacency matrix through rigorous mathematical deriva-
tions. This approach can significantly reduce the com-
putational complexity of analyzing evolving graphs in
DGNNs.

• On the architecture side, we propose a unified accelerator
architecture that can efficiently accelerate the proposed
one-pass execution of the GNN kernel. The proposed
accelerator architecture can be dynamically configured
to support various computation characteristics desired by
both the GNN and RNN kernels. In addition, we propose
a scheduling policy to efficiently allocate hardware re-
sources between GNN and RNN kernels with optimized
pipeline parallelism, thereby significantly reducing exe-
cution time and energy consumption.

• On the algorithm side, we propose a dataflow and map-
ping for the proposed I-DGNN to parallelize the proposed
dissimilarity computation and optimize the data locality
of inter-kernel data between GNN and RNN kernels,
eliminating costly data movement between processing
elements and memory modules.

• We conduct a detailed performance and energy evaluation
through simulation and show that the proposed accelera-
tor achieves 65.9%, 71.1%, and 58.8% reductions in exe-
cution time and 88.4%, 87.0%, and 85.9% improvements
in energy efficiency on average across multiple DGNN
datasets compared to ReaDy [1], DGNN-Booster [2], and
RACE [3], respectively.

II. BACKGROUND

A. Dynamic Graph Representation

In real-world applications [5], [10], [13]–[17], graphs evolve
over time, with vertices and edges being frequently added

𝑿𝟎𝑻[B] 𝑿𝟎𝑻[C] 𝑿𝟎𝑻[G]

⨁

𝑿𝟏𝑻[A]

Ag
gr
eg
at
io
n

Co
m
bi
na

tio
n

⨁

G
CN

la
ye
r1

𝑿𝟎𝑻[A] 𝑿𝟎𝑻[F]

𝑿𝟏𝑻[G]

⋯

⋯

⋯

⋯

Intermediate
Feature Vector

𝑾𝟏
Layer1
weights

A

B

D C E

F

GNN Kernel
GCN Layer 1

𝑿𝟏𝟏[v]

𝑿𝟐𝟏[v]

𝑿𝑳&𝟏𝟏 [v]
⋯⋯

GCN Layer 2

GCN Layer L
𝑿𝑳𝟏[v]

GNN Kernel
GCN Layer 1

𝑿𝟏𝟐[v]

𝑿𝟐𝟐[v]

𝑿𝑳&𝟏𝟐 [v]
⋯⋯

GCN Layer 2

GCN Layer L
𝑿𝑳𝟐[v]

GNN Kernel
GCN Layer 1

𝑿𝟏𝑻[v]

𝑿𝟐𝑻[v]

𝑿𝑳&𝟏𝑻 [v]
⋯⋯

GCN Layer 2

GCN Layer L
𝑿𝑳𝑻[v]

⋯
𝑮𝟏 𝑮𝟐 𝑮𝑻⋯

D
G

⋯⋯ ⋯⋯ ⋯⋯

RNN Kernel RNN Kernel RNN Kernel

⋯

⋯

⋯

⋯⋯ ⋯⋯ ⋯⋯
⋯

Output
Feature
Vectors

𝒁𝟏

𝒁𝟐 𝒁𝑻

Hidden
Feature
Vectors

𝑯𝟏

𝑯𝟐
𝑯𝑻

Final
Feature
Vectors

Feature Vectors
A

B

D C E

F
A

B

D C E

F

G G

×

𝑯𝟏 𝑯𝟐 𝑯𝑻&𝟏

𝑾𝒇

𝑼𝒇

×
×

×

Si
gm

oi
d

𝑾𝒇

𝑼𝒇

×
×

×

Si
gm

oi
d

𝑾𝒇

𝑼𝒇

×
×

× Ta
nh

𝑾𝒇

𝑼𝒇

×
×

×

Si
gm

oi
d

∘
∘

×

Tanh

∘

𝒄𝒗𝑻&𝟏

𝒛𝒗𝑻

𝒉𝒗𝑻&𝟏 𝒄𝒗𝑻

𝒉𝒗𝑻

RN
N
Ke

rn
el

(a) (c)

(b)

Fig. 2. (a)An example of a classic DGNN model, (b) a GCN computation
kernel, and (c) an RNN computation kernel.

or removed. In general, there are two types of dynamic
graphs [18] that have been used to record the temporal changes
on the graphs: continuous-time dynamic graphs and discrete-
time dynamic graphs. Continuous-time dynamic graphs are
often described as a pair <G,O>, where G represents the
initial state of a static graph, and O is a set of updates for
vertices and edges. Discrete-time dynamic graphs are viewed
as a sequence of discrete snapshots sampled at regular intervals
illustrated in equation 1, where Gt indicates a graph snapshot
at the timestamp t. In this work, we design I-DGNN based on
the discrete-time dynamic graph representation.

DG = {G1, G2, ...., GT }
(1)

B. Discrete-Time Dynamic Graph Neural Network

Discrete-time DGNN models [11] are designed for analyz-
ing discrete-time dynamic graphs. These models can be clas-
sified into two groups: typical DGNN models and specialized
DGNN models.

1) Typical DGNN Models: Typical DGNN models [11]
integrate both conventional GNN and RNN kernels, as com-
monly observed in the DGNN algorithmic community [19].
For discrete-time dynamic graphs, the DGNN model se-
quentially processes each snapshot to identify the changes
occurring in the graphs, as shown in Figure 2 (a). The GNN
kernel takes a snapshot Gt as the input, and it functions as a
typical GNN model to learn the latent representation of graphs.
The output feature vector Zt is then fed into the RNN kernel
to generate a hidden state vector Ht, which contains both
graph structure and temporal information. Consequently, the
computations of DGNN can be formulated as equation 2.

Zt = GNN{Gt}
Ht = RNN{Ht−1, Zt}

(2)

The GNN kernel: Figure 2 (b) shows a Graph Convolu-
tional Network (GCN) layer. The GCN layer contains two
computation phases, aggregation and combination. For the
aggregation phase, each vertex v collects the feature vectors
from its connected vertices. During the combination phase,

1039

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



0%
20%
40%
60%
80%

100%

R
e

-A
lg

o
ri

th
m

In
c-

A
lg

o
ri

th
m

R
e

-A
lg

o
ri

th
m

In
c-

A
lg

o
ri

th
m

R
e

-A
lg

o
ri

th
m

In
c-

A
lg

o
ri

th
m

R
e

-A
lg

o
ri

th
m

In
c-

A
lg

o
ri

th
m

R
e

-A
lg

o
ri

th
m

In
c-

A
lg

o
ri

th
m

R
e

-A
lg

o
ri

th
m

In
c-

A
lg

o
ri

th
m

R
e

-A
lg

o
ri

th
m

In
c-

A
lg

o
ri

th
m

(a)PM (b)RD (c)MB (d)TW (e)WD (f)FK (g)Average

Intermediate features Weights, Graph structure data, and Input/output features

In
te

rm
e

d
ia

te
Fe

at
u

re
s

D
R

A
M

A
cc

es
s

P
ro

p
o

rt
io

n

61%

91%

62%

81%

63% 66% 62%
79%

62%

79%

62%

80%

62%

79%

Fig. 3. DRAM access breakdown for intermediate, weight, graph, and feature
vectors across different datasets with Recomputing Algorithm (Re-Algorithm)
and Incremental Computing Algorithm (Inc-Algorithm).

the features are aggregated and multiplied by a weight matrix
Wl.The computations of GCN can be defined as follows:

xt
l [v] = Relu(Atxt

l−1[v]Wl), l ∈ (0, L] (3)

where At is the normalized Laplacian matrix over the adja-
cency matrix of the graph Gt, xt

l−1[v] is the initial feature
vector of the vertex v at lth GCN layer at the timestamp t,
xt
l [v] is the updated feature vector of the vertex v of lth GCN

layer at the timestamp t, L is the number of GCN layers, and
Wl is a weight matrix at lth GCN layer. It should be noted
that the updated feature vector of the last GCN layer (xt

L[v])
is defined as the output feature vector ztv . This will be used as
the input for the RNN kernel to generate a hidden state vector
ht
v . While many GNN variants have been proposed such as

GraphSAGE [20] and Graph Isomorphism Networks (GINs)
[21], their key computations can be abstracted in the form of
adjacency matrices.

The RNN kernel: As mentioned, the RNN kernel takes the
output of GNN kernels as the input (i.e., ztv) to generate the
hidden state whenever the snapshot arrives. This computation
involves matrix multiplication, element-wise multiplication
(◦), addition, and activation functions (e.g., sigmoid, tanh).
For example, Figure 2 (c) illustrates an example of RNN
computations, where the most popular long short-term memory
(LSTM) [22] is used. This work can also be efficiently applied
to other RNN variants, such as gated recurrent units (GRUs).
LSTM involves four input matrix multiplications by multiply-
ing the input vector ztv with four input weight matrices, Wi,
Wf , Wo, and Wc, as shown in Equation 4.

itv = sigmoid(Wiz
t
v + Uih

t−1
v )

f t
v = sigmoid(Wf z

t
v + Ufh

t−1
v )

otv = sigmoid(Woz
t
v + Uoh

t−1
v )

ctv = f t ◦ ct−1
v + itv ◦ tanh(Wcz

t
v + Uch

t−1
v )

ht
v = otv ◦ tanh(ctv)

(4)

Furthermore, the LSTM model includes four matrix multi-
plications by multiplying the hidden vector ht−1

v with four
hidden weight matrices, Ui, Uf , Uo, and Uc, respectively.
These eight matrix multiplications eventually produce the
input gate it, forget gate f t, output gate ot, and cell state
feature ct of vertex v.

2) Specialized DGNN Models: Several specialized DGNN
models [23], [24] have been proposed to address specific
applications. For example, structural-specific DGNN models
like HDGNN [23] are designed for managing heterogeneous
graphs, utilizing non-GNN methods for processing graph

structural data while continuing to rely on RNNs for tem-
poral time-series data processing. Similarly, temporal-specific
DGNN models, such as STGNPP [25], are tailored for pre-
dictive tasks. STGNPP adopts GNNs for processing graph
structural data and employs non-RNN methods, such as trans-
formers and neural process priors (NPP), for handling temporal
data, enabling effective traffic congestion time prediction.
Additionally, some DGNN models, such as FiFrauD [26],
handle dynamic graphs without relying on either GNN or RNN
architectures. Instead, they use unsupervised and scalable ap-
proaches to detect suspicious traders and behavioral patterns.
These specialized DGNN models are less commonly adopted
because GNN or RNN models are replaced by application-
dependent heuristics or unsupervised learning. For instance,
the k-truss decomposition used in HDGNN is highly spe-
cialized for capturing multi-scale topological structures in
heterogeneous graphs, limiting its generalizability to other
types of graph data. Similarly, FiFrauD’s unsupervised ap-
proach is tailored to identifying suspicious trading behaviors,
making it less applicable to broader graph-based tasks. These
application-specific techniques have limited applicability to
various domains. Consequently, the focus of this paper remains
on typical DGNN models.

III. MOTIVATION

A. Pitfalls of Existing DGNN Acceleration Frameworks

Recent efforts [1], [2] have attempted to address the com-
putation and data reuse concerns for DGNN execution. In
general, prior work aims to eliminate redundant graph com-
putations between consecutive snapshots or exploit the data
reuse of graph datasets for reducing off-chip memory access.
Nevertheless, all the prior work processes each graph snapshot,
regardless of its size, through the entire DGNN pipeline. This
requires substantial memory access and data movement to
retrieve a full set of intermediate data and weight matrices
from off-chip memory. According to our preliminary study as
shown Figure 3, a considerable amount of off-chip memory
accesses, ranging from 62% to 79%, are caused by moving the
intermediate data even though only processing a limited set of
evolved edges and vertices over snapshots. Specifically, prior
work can be classified into two categories to optimize DGNN,
namely recomputing and incremental computing approaches.

1) Recomputing approach: The recomputing approach [1],
[2] is straightforward, in which each snapshot is processed
individually through the entire DGNN model as shown in
Figure 4 (a). The optimization strategy is very similar to
traditional GNN acceleration which exploits the data reuse
of graph datasets. For example, a set of vertices with high
connectivity is grouped to reduce memory access. Despite
significant performance improvement, a collection of vertices
is computed repeatedly, as graph snapshots evolve slightly
over time. Consequently, a significant amount of computations
and memory access could be eliminated when processing
consecutive snapshots.

1040

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



Input
Features

(𝑿𝟎
𝒕+𝟏)

Adjacency
Matrix (𝑨𝒕+𝟏)

Output
Features

(𝑿𝟑
𝒕+𝟏)

A a d
B b c
C a b
D c
E d
A B C D E

(a
)
R
ec
o
m
p
u
ti
n
g
A
lg
o
ri
th
m

(t+1)-th
snapshot

A

B

D C

E

GNN Kernel
G
N
N
La
ye
r
1

Weight
Matrix
(𝑾𝟏)

Intermediate

Features (𝑿𝟏
𝒕+𝟏)

G
N
N
La
ye
r
2

Weight
Matrix
(𝑾𝟐)

Intermediate

Features (𝑿𝟐
𝒕+𝟏)

G
N
N
La
ye
r
3

R
N
N
K
e
rn
e
l

DRAM
(b
)
In
cr
em

en
ta
lA

lg
o
ri
th
m

Affect Input
Features

(A𝑿𝟎
𝒕+𝟏)

Adjacency
Matrix (𝑨𝒕+𝟏)

A a d
B b c
C a b
D c
E d
A B C D E

(t+1)-th
snapshot

A

B

D C

E

G
N
N
La
ye
r
1Add vertex E

Add vertex E

Intermediate

Features (𝑿𝟏
𝒕+𝟏)

𝑿𝟏
𝒕

G
N
N
La
ye
r
2

Output
Features

(𝑿𝟑
𝒕+𝟏)

G
N
N
La
ye
r
3

Intermediate

Features (𝑿𝟐
𝒕+𝟏)

𝑿𝟐
𝒕

𝑿𝟑
𝒕

GNN Kernel

R
N
N
K
er
n
el

DRAM

Weight
Matrix
(𝑾𝟑)

Fig. 4. (a) An example of recomputing algorithm execution. (b) an example
of incremental algorithm execution.

2) Incremental Computing approach: To address the redun-
dant computations between snapshots, recent efforts [3] have
proposed an incremental computing approach to accelerate
DGNN, where the overlapped graph components between
snapshots, such as vertices and edges, are removed for sub-
sequent computations. However, such a computing paradigm,
while only processing a limited amount of evolved graph data,
goes through the entire DGNN execution. This still requires
a full set of weight matrices and intermediate data, which
leads to a significant amount of off-chip memory access. For
example, two consecutive snapshots need to produce two sets
of intermediate data that are eventually aggregated to update
the feature vectors. Given the large dimension size of feature
vectors, temporally duplicating intermediate data jeopardizes
the effectual utilization of on-chip memory.

For simplicity, we use an example to illustrate the problem.
In the first time epoch, all the input feature vectors are loaded
and multiplied by the weight matrix, which produces the
intermediate feature vectors for each vertex. Through a multi-
layer of GNN, the intermediate features of the last layer of
GNN, which we call output feature vectors in this paper, are
forwarded to the RNN. All the intermediate data and the output
features are stored for the following snapshots. In the next time
epoch shown in Figure 4 (b), when a new snapshot arrives,
only a part of the input features is computed through the
entire execution pipeline. The new computations produce a
new set of intermediate data which is augmented with the
reusable intermediate data produced by the prior snapshot.
As such, the intermediate data of both snapshots should be
temporally stored on the chip. It should be noted that the
size of intermediate data of the subsequent snapshot increases
when GCN layers increase. This problem has not been well
addressed by existing GNN and DGNN accelerators.

IV. PROPOSED I-DGNN ALGORITHM

The objective of the proposed I-DGNN algorithm is to
investigate a one-pass computation approach for processing
evolved graphs, instead of going through the entire DGNN

Required Input

Features (𝑿𝟎
𝒕+𝟏)

G
ra

p
h

D
is

si
m

ila
ri

ty
 

M
a

tr
ix

(∆
𝑨

)A d
B
C
D
E d
A B C D E

(a
)

P
ro

p
o

se
d

A
lg

o
ri

th
m

(t+1)-th
snapshot

A

B

D C

E

Fused
Weight
Matrix
(𝑾𝑪)

R
N

N
K

e
rn

e
l

DRAM

D
is

si
m

il
ar

it
y 

C
o

m
p

u
ta

ti
o

n

A
d

ja
ce

n
cy

M
a

tr
ix

(𝑨
𝒕 )A a

B b c
C a b
D c
E
A B C D E

t-th
snapshot

A

B

D C

ad2 d(a2+d2)
abd

ad2

d(a2+d2) abd

GNN Kernel

A
gg

re
ga

ti
o

n

C
o

m
b

in
at

io
n

Updated
Output

Features

(∆ 𝑿𝟑
𝒕+𝟏)

(b
)

D
is

si
m

ila
ri

ty
 C

o
m

p
u

ta
ti

o
n

A d
B
C
D
E d
A B C D E

A
d

ja
ce

n
cy

M
at

ri
x

(𝑨
𝒕 )

A a
B b c
C a b
D c
E
A B C D E

𝚺

ad2 d(a2+d2)
abd

ad2

d(a2+d2) abd

Fused Graph Dissimilarity 

Matrix (∆𝑨𝑪
𝒕+𝟏)

T

(∆𝑨∆𝑨∆𝐀)

(∆𝑨∆𝑨𝑨𝒕)

(∆𝑨𝑨𝒕𝑨𝒕)

(𝑨𝒕∆𝑨𝑨𝒕) = 𝟎

(∆𝑨𝑨𝒕∆𝑨) = 𝟎

On-chip for
Aggregation

(∆𝑨∆𝑨)

(∆𝑨𝑨𝒕)

T

Fused Graph Dissimilarity 

Matrix (∆𝑨𝑪
𝒕+𝟏)

G
ra

p
h

D
is

si
m

ila
ri

ty
 

M
a

tr
ix

(∆
𝑨

)

Dissimilarity-only computation

Dissimilarity & Last 
snapshot interaction 

computation

Fig. 5. (a) An example of the proposed I-DGNN execution algorithm, and (b)
an example of the proposed one-pass computation kernel for graph update.

computing pipeline. This could serve as a basis to reduce
the memory access for retrieving massive intermediate data.
To achieve this, we postulate that a mathematical deriva-
tion of DGNN computations between snapshots is needed
to understand the essential data and computation required
for incremental computing. As shown in Figure 5 (a), the
proposed I-DGNN algorithm consists of three components,
including a dissimilarity-based computation kernel to capture
all the vertices that require feature update (i.e., aggregation
and combination) by the evolving graphs in multi-layer GNNs,
a fused aggregation phase, and a fused combination phase.
Consequently, multi-layer GNN architecture will be simplified
as a dissimilarity computation kernel for subsequent snapshots
as shown in Figure 5 (b). The dissimilarity computation only
involves the evolved graph structure and the past snapshot,
which will be discussed in what follows.

A. DGNN Layer Fusion

Unlike traditional graph analytics, evolving graph compo-
nents will impact other graph components in GNN models at
both aggregation and combination phases due to the increased
receptive field (e.g., the number of layers). Layer fusion has
been well exploited in deep learning and GNNs to optimize
data locality. Despite sharing a similar approach, we aim to
leverage layer fusion to extract the essential computations
incurred by the evolved graph components. For simplicity,
following traditional layer fusion principles, we use an L-layer
DGNN model to illustrate the key idea.

The computation of the lth GCN layer for the tth snapshot
can be defined as equation 5, where At is the adjacency matrix,
Xt

l−1 is the feature vectors from the prior layer, and Wl is the
weight matrix.

Xt
l [v] = Relu(AtXt

l−1[v]Wl), l ∈ (0, L] (5)

The final output of the GNN model for the tth snapshot can
be represented by:

Xt
L[v] = Relu((At)LXt

0[v]
L∏

l=1

Wl) (6)

1041

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



We define the adjacency matrix of the fused GNN layer
as equation 7, where the consecutive power of the adjacency
matrix represents the adjacency matrix for different GNN
layers. At

C = (At)L (7)

Similarly, the weight matrix of the fused GNN layer can be
represented by:

WC =
L∏

l=1

Wl (8)

Consequently, we can use equation 9 to represent the
computation of fused GNN layers for a certain snapshot.

Xt
C [v] = Relu(At

CXt
0[v]WC) (9)

As the weight matrices of the GNN layers are consistent
across the continuous snapshots, we only compute the fused
weight matrix (WC) in the initial snapshot and reuse it in
the following snapshots. On the other hand, the adjacency
matrix of the GNN layers is dynamic between the continuous
snapshots, so it should be recomputed at runtime which will
be discussed in what follows.

B. Dissimilarity-based execution of DGNN Kernel

After fusing DGNN layers, we need to understand how
the evolved graph components affect the computations. The
dissimilarity-based computation kernel is built upon a classic
graph theory - adjacency matrix powers [27]. The power of
adjacency matrices represents the distance between vertices
in two matrices. This theory is used to measure the distance
of feature propagation in multi-layer GNNs. For example, we
use the equation 10 to understand the computation difference
between two consecutive snapshots, t and t+1. The difference
between the output features of the tth and (t+ 1)th snapshot
is defined by:

∆Xt+1
C [v] = Xt+1

C [v]−Xt
C [v]

= Relu{(At+1
C Xt+1

0 [v]−At
CXt

0[v])WC}
= Relu{(∆At+1

C Xt+1
0 [v] +At

C∆Xt+1
0 [v])︸ ︷︷ ︸

Aggregation

WC

︸ ︷︷ ︸
Combination

} (10)

∆Xt+1
0 [v] is the updated input features of (t+1)th snapshot,

defined by:
∆Xt+1

0 [v] = Xt+1
0 [v]−Xt

0[v] (11)

∆At+1
C is the fused graph dissimilarity matrix of the fused

GNN layer between the tth and (t+1)th snapshot, which can
be further defined by:

∆At+1
C = At+1

C −At
C

= (At+1)L − (At)L
(12)

Based on the principle of adjacency matrix powers, (At+1)L

and (At)L represent the receptive field of GNNs, where the
exponent (i.e., the number of GNN layers) decides the longest
distance of feature aggregation of each vertex in multi-layer
GNN models.Furthermore, ∆At+1

C can be represented only
related to the tth snapshot and the updated adjacency matrix
∆A as equation 13. The expansion represents the feature

aggregation distance at each layer, in which all the vertices
along the receptive field require feature update.

∆At+1
C = (At +∆A)L − (At)L

=

L−1∑
i=0

(At)i∆A(At +∆A)L−1−i
(13)

Nevertheless, from the above derivation, we can also con-
clude that the feature aggregation phase is determined by four
factors, the input features (Xt+1

0 [v]), the updated input features
(∆Xt+1

0 [v]), the fused graph dissimilarity matrix (∆At+1
C ),

and the fused adjacency matrix of the previous snapshot (At
C),

which already be calculated in the execution of the previous
tth snapshot. ∆A is the matrix representation to record the
evolved graph structure components, such as added or removed
edges and vertices, which we call the graph dissimilarity
matrix in this paper. ∆Xt+1

0 [v] is the matrix representation
to record the evolved input features, such as changed, added
or removed features, which we call the updated input feature
matrix in this paper. The combination requires one additional
input - fused weight matrix (WC). Please note that the weight
matrix is relatively small in GNNs as compared to traditional
deep neural networks. We use an example to illustrate the
proposed algorithm, shown in Figure 5 (a). It is becoming
evident that the computations for subsequent snapshots could
be simplified as an equation that only contains the adjacency
matrix, graph dissimilarity matrix, the involved input features
of the latest snapshot, and a fused weight matrix. As such,
it is not necessary to process each graph dissimilarity matrix
through the entire execution pipeline.

C. Optimization for Dissimilarity Computations
We have transformed the incremental computation into a

simplified computation that only requires adjacency matrices
and the involved input features. However, calculating the con-
secutive power of the adjacency matrix is still time-consuming.
As such, we aim to leverage the symmetric characteristics of
the adjacency matrix to use matrix transpose to replace a set
of matrix multiplications. To better illustrate the idea, we take
a three-layer GNN kernel as an example.

We expand the computation for the fused graph dissimilarity
matrix as shown in equation 14. The third power of an adja-
cency matrix could be transformed into a set of chained matrix
multiplications. Multiple chained matrix multiplications share
common matrices, such as At and ∆A. The only difference
is the sequence of those chained matrix multiplications. Given
At and ∆A are symmetric matrices, the results of chained
matrix multiplications could be obtained by transposing those
multiplications with an opposite order. For example, matrix
transport of ∆AAtAt equals to AtAt∆A, and matrix transport
of ∆A∆AAt equals to At∆A∆A.

∆At+1
C = (At +∆A)3 − (At)3

=

2∑
i=0

(At)i∆A(At +∆A)2−i

= ∆AAtAt +∆AAt∆A+∆A∆AAt

+∆A∆A∆A+At∆AAt +At∆A∆A

+AtAt∆A

(14)

1042

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



Off-chip DRAM
H

o
st

In
te

rf
ac

e
Controller

M
em

o
ry

Global Buffer (GLB)Buffer
Controller

Scheduler

Crossbar

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

PE
S

Torus Link

Switch

R
e

so
u

rc
e

P
ar

ti
ti

o
n

D
at

af
lo

w
G

en
er

at
o

r

P
E

C
o

n
figu

ratio
n

Instruction Buffer

Request
Dispatcher D

is
si

m
il

ar
it

y
Id

en
ti

fi
ca

ti
o

n
U

n
it

(D
IU

)

Off-chip data On-chip data Control Signal

Fig. 6. Overview of the proposed I-DGNN accelerator architecture.
As such, the computation for ∆At+1

C [v] can be optimized
as: ∆At+1

C =At(∆AAt) + ∆AAt∆A

+ (∆A∆AAt)(1 + Transpose)

+ (∆AAtAt)(1 + Transpose)

+ ∆A∆A∆A

(15)

Eventually, as shown in Figure 5 (b), the computations of
graph updates between snapshots are converted to a set of
chained matrix multiplications and their transpose operations.

V. I-DGNN ACCELERATOR ARCHITECTURE

While a significant number of accelerators have been pro-
posed for GNNs and DGNNs, they mainly target the reuse
of graph data. In this paper, our aim is to optimize the reuse
of intermediate data for DGNN models. To achieve this goal,
we have transformed the traditional DGNN computation into
a set of chained matrix multiplications that are related to the
graph adjacency matrix. The next challenge is to design an
efficient architecture for such a computing paradigm while also
supporting traditional DGNN executions. To address the men-
tioned challenge, the proposed I-DGNN accelerator features
four unique components: a Dissimilarity Identification Unit
(DIU), a reconfigurable PE architecture, a fine-grained pipeline
scheduler, and a data locality-aware dataflow. The DIU gener-
ates the graph dissimilarity matrix and updated input feature
vectors between consecutive snapshots. The reconfigurable PE
design supports the distinct computation and communication
characteristics of both GNN and RNN kernels. Moreover,
I-DGNN’s fine-grained scheduler can efficiently handle the
pipeline parallelism among various GNN and RNN kernels
with resource allocation. Lastly, the proposed data dataflow
and mapping can reduce on-chip communication overheads by
optimizing the locality of intermediate data between kernels.

A. I-DGNN Accelerator Overview

As shown in Fig. 6, the proposed I-DGNN accelerator
consists of a request dispatcher, an instruction buffer, a fine-
grained pipeline scheduler, a dataflow generator, a PE con-
figuration unit, a buffer controller, a global buffer (GLB), a
Dissimilarity Identification Unit, and a PE array interconnected
by a torus topology. The accelerator sends instructions to the
fine-grained pipeline scheduler, which determines the resource
allocation, dataflow, and mapping. The PE array is connected
through a torus topology. The detailed microarchitecture of the
PE will be described in the following sections.

In
st
ru
ct
io
n
Q
u
e
ue

Sw
it
ch

In
te
rf
ac
e

C
o
n
tr
o
lle
r

Control
signal

G
ra
p
h
St
ru
ct
u
re

B
u
ff
e
r
(G
S
B
)

Processing Element

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯

Buffer bank

Buffer bank

Buffer bank

Final features of the
RNN kernel Partial features

32bit

32
b
it

32bit

ReLu

Sigmoid

Post Processing Unit(PPU)

Transpose

Pooling Tanh

Bias

Lo
ca
lB

u
ff
er

(L
B
)

In
p
u
t
fe
at
u
re

e
xc
h
a
n
ge

w
it
h

n
e
ig
h
b
o
r
P
E

W
e
ig
h
ts
/
In
p
u
t

fe
at
u
re
s

Graph structure
data exchange
with neighbor PE

Output features
of GNN kernel

P
ar
tF
D

Partial features

Adjacency
matrices

Fu
se
d
gr
ap
h
d
is
si
m
il
a
ri
ty

m
at
ri
x/

it
s
p
ar
ti
al
su
m

P
a
rt
ia
ls
u
m

o
f
fu
se
d
g
ra
p
h
d
is
si
m
il
a
ri
ty

m
a
tr
ix
(P
a
rt
F
D
)

Fig. 7. Microarchitecture of the proposed I-DGNN processing element.

B. Proposed PE Microarchitecture

The goal of the proposed PE is to support the distinct
computation characteristics of GNN, RNN, and the one-pass
computation kernel in one combined architecture. Such design
can retain the inter-kernel data within PE architecture, reduc-
ing the data movement between PEs and memory modules.

Specifically, each PE consists of a switch interface, a con-
troller, a Graph Structure Buffer (GSB), a Local Buffer (LB),
a Multiplier Array (MA), an Adder Array (AA), and a Post
Processing Unit (PPU), as shown in Fig. 7. Considering that
the input matrices consist of both sparse and dense matrices
stored in different formats, each PE incorporates separate input
sparse (GSB) and dense buffers (LB) for matrices with distinct
sparsity ratios. The buffers, including the GSB and LB, receive
data through the switch interface. The PE controller generates
control signals to guide PE execution, orchestrate resource
partitioning, and configure MUX-DeMUXes to manage the
data path. The GSB stores the adjacency matrix of the previous
snapshot and the graph dissimilarity matrix in Compressed
Sparse Row (CSR) format. The LB stores the weight matrices
for the GNN and RNN kernels and the involved input features.
The LB also holds the reused data, including RNN kernel
output features of the previous snapshot, the product of the
RNN weight matrices with the GNN kernel output features of
the previous snapshot, and the cell state feature of the previous
snapshot. After the RNN execution of the latest snapshot, all
the reuse data stored in the LB will be updated. The PPU can
perform nonlinear operations including ReLU, Sigmoid, Tanh,
pooling, bias, and matrix transpose.

1) Proposed Reconfigurable Datapath: The proposed PE
architecture can be configured to support several computing
models desired by the GNN and RNN kernels.
One-shot Computation: The adjacency matrix of the previous
snapshot and the graph dissimilarity matrix of consecutive
snapshots are sent from the GSB to the MA. The AA then
generates part of the fused graph dissimilarity matrix based
on the MA’s output. Each part of the fused graph dissimilarity
matrix is accumulated at AA to produce the complete fused
graph dissimilarity matrix, which is stored in the GSB. If
needed, nonlinear matrix transformations are performed in the
PPU before the partial accumulation. The PPU processes the
nonlinear matrix transformations by exchanging the row and
column index of the matrices.

1043

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



WComb

AComb

AG

CB

RNN-A

RNN-B

S-(0)

S-(0) S-(0)

S-(0) S-(0) S-(0) S-(1) S-(1) S-(1)

S-(1)

⋯⋯

⋯ ⋯

S-(t) S-(t) S-(t)

S-(t-1) S-(t) ⋯

Time

⋯⋯

Number of MAC Units/PE

𝜶

𝜷

G
N
N
Ke

rn
el

𝜶 + 𝜷

RN
N
Ke

rn
el

GNN kernel pipeline of
the initial snapshot

GNN kernel pipeline of
the following snapshots

S-(t)

RNN kernel
pipeline of

the following
snapshots

Fig. 8. The proposed pipeline workflow, where st means the relevant
computations related to tth snapshot.
GNN Aggregation: The fused graph dissimilarity matrix and
involved input features are sent from the GSB and LB to
the MA, respectively. The AA then generates the aggregated
partial features based on the MA’s output. These aggregated
partial features replace the original input features of the
consecutive snapshots stored in the LB.
GNN Combination: The aggregated partial features and the
combined weight matrix are sent from the LB to MA. The AA
then generates the GNN updated output features based on the
MA’s output. If needed, nonlinear activation is performed in
the PPU before writing the updated output features to LB. The
updated output features of the consecutive snapshot replace the
previously stored aggregated partial features in the LB.
RNN: The RNN output features of the previous snapshot,
the GNN updated output features, the weight matrices of the
RNN kernel, and the reused data are sent to MA from LB,
respectively. The AA generates the output features of the RNN
and writes it tothem to LB. If needed, nonlinear operations are
performed in PPU before the output feature write back to LB.

C. Proposed Analytical Model for Pipelining DGNN Kernels

Since we have simplified the computations for the GNN
kernel, it is critical to balance the workload between the
proposed GNN and RNN kernels. This can directly affect
the hardware resources and memory access for storing and
loading intermediate data between two models. If recalled, our
proposed GNN execution consists of multiple phases: weight
matrix fusion (WComb), adjacency matrix fusion (AComb),
Aggregation (AG), and Combination. In addition, the RNN
could be decomposed into two phases, which we call RNN-
A and RNN-B. RNN-A refers to the execution phase of RNN
kernels independent of GNN, so it can be executed in parallel.
On the other hand, RNN-B depends on the output of the GNN
kernel. For example, the computation of RNN-A phase can be
described as equation 16.

At
α[v] = Uαh

t−1
v , α ∈ [i, f, o, c] (16)

On the other hand, the computation of the RNN-B phase can
be described below:

itv = sigmoid(Wiz
t
v +At

i[v])

f t
v = sigmoid(Wf z

t
v +At

f [v])

otv = sigmoid(Woz
t
v +At

o[v])

ctv = f t ◦ ct−1
v + itv ◦ tanh(Wcz

t
v +At

c[v])

ht
v = otv ◦ tanh(ctv)

(17)

Our goal is to allocate adequate resources to each exe-
cution phase towards better pipeline parallelism as shown

in Figure 8. Given this, we propose an analytical model to
capture such dynamics. In general, the objective function is to
equalize the execution time of both GNN and RNN which can
be defined as min

(
| CompT t

G − CompT t−1
RA − CompT t

RB |
)
,

where CompT t
G is the computation time of GNN kernel at

time t, CompT t−1
RA is the computation time of RNN-A at time

t − 1, and CompT t
RB is the computation time of RNN-B at

time t.
The computation time of the GNN kernel is further de-

termined by multiple factors, such as the computation time
of fusing adjacency matrix (CompT t

AComb), the computation
time of aggregation phase (CompT t

AG), and the computation
time of combination phase (CompT t

CB).
The computation time of fusing adjacency matrix

(CompT t
AComb) is related to the sparsity of the adjacency

matrix for last snapshot (pt−1), the sparsity of the graph
dissimilarity matrix (st), the number of vertex (V t), the
number of the PE (M ), and the number of MAC units assigned
to GNN (α) per PE. The computation time of fusing adjacency
matrix in a three-layer GNN kernel can be formulated as
equation 18.

CompT t
AComb = {st(st + pt−1)(1 + 2pt−1)(V t)3}/(Mα) (18)

Similarly, the computation time of the aggregation phase is
subject to the sparsity of the adjacency matrix for last snapshot
(pt−1), the sparsity of the graph dissimilarity matrix (st), the
number of vertex (V t), the number of the features for each
vertex (Kt), the number of the PE (M ), and the number
of GNN MAC units per PE (α). The computation time of
the aggregation phase in a three-layer GNN kernel can be
formulated as equation 19.

CompT t
AG =

{3(st)2pt−1 + 3st(pt−1)2 + (st)3}(V t)2Kt

Mα
(19)

The computation time for the combination phase depends
on the number of vertex (V t), the number of the features for
each vertex (Kt), the width of the GNN weight matrix (C), the
number of the PE (M ), and the number of GNN MAC units
per PE (α). The computation time of the combination phase in
a three-layer GNN kernel can be formulated as equation 20.

CompT t
CB = (V t)KtC/(Mα) (20)

The computation time of the RNN-B phase is defined by:

CompT t
RB = {V tR(4C + 3)}/(Mβ) (21)

V t represents the vertex number in the latest snapshot, R
represents the size of the weight and hidden matrices in RNN,
and β represents the number of RNN MAC units per PE.

Similarly, the computation time of the RNN-A phase
(CompT t−1

RA ) is defined by:

CompT t−1
RA = 4V t−1CR/(Mβ) (22)

D. Proposed Dataflow and Mapping

In deep learning acceleration, both dataflow and mapping
choices can affect the performance by exploiting the temporal
and spatial data locality [28]–[30]. Given the limited dimen-
sion size of weight matrices in GNNs, it becomes difficult to

1044

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



𝑨𝒕[0:1][:]

𝑼𝒊,𝒇,𝒐,𝒄[:][:]

𝑾𝑪[:][:]

𝑿𝟎𝒕)𝟏[:][0:1]

𝑾𝒊,𝒇,𝒐,𝒄[:][:]

∆A[:][:]

PE (0,0)

𝑨𝒕[4:5][:]

𝑼𝒊,𝒇,𝒐,𝒄[:][:]

𝑾𝑪[:][:]

𝑿𝟎𝒕)𝟏[:][4:5]

𝑾𝒊,𝒇,𝒐,𝒄[:][:]

∆A[:][:]

PE (1,0)

𝑨𝒕[1:2][:]

𝑼𝒊,𝒇,𝒐,𝒄[:][:]

𝑾𝑪[:][:]

𝑿𝟎𝒕)𝟏[:][1:2]

𝑾𝒊,𝒇,𝒐,𝒄[:][:]

∆A[:][:]

PE (0,1)

𝑨𝒕[5:6][:]

𝑼𝒊,𝒇,𝒐,𝒄[:][:]

𝑾𝑪[:][:]

𝑿𝟎𝒕)𝟏[:][5:6]

𝑾𝒊,𝒇,𝒐,𝒄[:][:]

∆A[:][:]

PE (1,1)

𝑨𝒕[2:3][:]

𝑼𝒊,𝒇,𝒐,𝒄[:][:]

𝑾𝑪[:][:]

𝑿𝟎𝒕)𝟏[:][2:3]

𝑾𝒊,𝒇,𝒐,𝒄[:][:]

∆A[:][:]

PE (0,2)

𝑨𝒕[6:7][:]

𝑼𝒊,𝒇,𝒐,𝒄[:][:]

𝑾𝑪[:][:]

𝑿𝟎𝒕)𝟏[:][6:7]

𝑾𝒊,𝒇,𝒐,𝒄[:][:]

∆A[:][:]

PE (1,2)

𝑨𝒕[3:4][:]

𝑼𝒊,𝒇,𝒐,𝒄[:][:]

𝑾𝑪[:][:]

𝑿𝟎𝒕)𝟏[:][3:4]

𝑾𝒊,𝒇,𝒐,𝒄[:][:]

∆A[:][:]

PE (0,3)

𝑨𝒕[7:8][:]

𝑼𝒊,𝒇,𝒐,𝒄[:][:]

𝑾𝑪[:][:]

𝑿𝟎𝒕)𝟏[:][7:8]

𝑾𝒊,𝒇,𝒐,𝒄[:][:]

∆A[:][:]

PE (1,3)

Fig. 9. An example of the proposed dataflow and mapping in a 2 × 4 PE array,
where ∆A[:][:] means the graph dissimilarity matrix between consecutive
snapshots, WC [:][:] means the fused GNN weight matrix, At[γ][v] means the
adjacency matrix, Xt+1

0 [f ][v] means the (f +1)th input feature of vertex v,
and Wi,f,o,c[:][:] and Ui,f,o,c[:][:] are weight matrices of the RNN kernel.

significantly improve data reuse by following traditional loop
transformation. Recent efforts [31]–[33] have evidenced that
graph reuse data, e.g., commonly-shared vertex, is the primary
source to reduce off-chip memory access. Departing from prior
work, we aim to propose a dataflow and mapping strategy
that can efficiently support the proposed one-pass computation
tailored for DGNNs. There are two major challenges, namely
(1) parallelism strategy selection for computing fused graph
dissimilarity matrix (∆At

C), and (2) dataflow and mapping
for optimizing the data locality of intermediate data between
GNN and RNN kernels.
Dataflow and Mapping for GNN kernel: As compared to
existing dataflows that are optimized for input and weight
reuse [32]–[34], the proposed dataflow is used to parallelize
the dissimilarity computation and increase the intermediate
data reuse between GNN and RNN kernels. Specifically, the
weight matrix is relatively small in DGNN, and the graph
changes slightly over snapshots. Consequently, both weight
matrix and graph dissimilarity matrix could be duplicated at
each PE. The major bottleneck is the adjacency matrix and
feature vectors whose size is relatively larger. As such, we
propose to distribute both adjacency matrix and feature vectors
among PEs. To improve buffer utilization, we enabled inter-PE
communications for sharing the distributed adjacency matrix
and feature vectors. As shown in Figure 9, we distribute the
adjacency matrix (At−1) and feature vectors (Xt

0) among PEs.
The adjacency matrix is multiplied with graph dissimilarity to
produce the fused graph dissimilarity matrix. The fused graph
dissimilarity matrix is multiplied by feature vectors to produce
the output data.

For example, at time step ❶, each PE is assigned a part
of the adjacency matrix and feature vectors. For example,
At−1[0 : 1][:] and Xt

0[:][0 : 1] are assigned to PE [0,0].
When all PEs complete the computation, both the adjacency
matrix and feature vectors move from one to another. At time
step ❷, after the first inter-PE movement, PE [0,0] receives
At−1[1 : 2][:] and Xt

0[:][1 : 2] from PE [0,1], and so on and so
forth. Similarly, in the following time steps, each partition of
data is passed through all the PEs. Each PE generates part of
the updated output features (∆Xt+1

L ) and taking it as the input
of the RNN kernel, when the the GNN execution is finished.
For example, PE [0,0] generates ∆Xt+1

L [0 : 1][:], representing
the 1th and 2th updated features of all the vertices.
Dataflow and Mapping for RNN kernel: We spatially

TABLE I
DETAILS OF DATASETS USED FOR EVALUATION

Datasets Vertices Edges Features Description
PubMed (PM) 1,917 88,648 500 Citation Graph
Reddit (RD) 55,863 858,490 602 Social Graph
Mobile (MB) 340,751 2200203 362 Citation Graph
Twitter (TW) 8,861 119,872 768 Sharing Graph

Wikipedia (WD) 9,227 157,474 172 Citation Graph
Flicker (FK) 2,302,925 33,140,017 800 Social Graph

duplicate the weight matrices of RNN kernels at each PE
given their small size. Specifically, at each PE, the RNN-A
phase takes the output hidden feature of the RNN-B phase
at the last snapshot (ht−1

v ) as input. Each PE generates the
output of the RNN-A phase by multiplying the hidden feature
with four local RNN weight matrices, Ui, Uf , Uo, and Uc,
respectively. Additionally, the RNN-B phase takes the output
of GNN kernels (∆Xt+1

L ) as input to generate the hidden
features whenever a snapshot arrives. For each PE, the inputs
(∆Xt+1

L ) are multiplied with the other four local RNN weight
matrices, Wi, Wf , Wo, and Wc. As such, the RNN kernel can
consume the output features produced by the GNN kernel at
each PE without incurring additional cross-PE data transfer.

VI. EVALUATIONA. Evaluation Setup

Accelerator Simulator : We built a cycle-accurate simula-
tor to measure the performance of the I-DGNN accelerator. In
order to obtain execution time results, the simulator monitors
the number of arithmetic operations and the number of ac-
cesses across the memory hierarchy. The I-DGNN accurately
captures the dynamics of pipeline scheduling, dataflow, and
distinct system configurations. The number of arithmetic op-
erations is used to calculate the computation time, whereas the
number of accesses of each memory hierarchy is used to cal-
culate the communication time. The off-chip communication
time is obtained from the DRAMSim2 simulator [35]. Ideally,
the execution time of each system component, such as off-
chip communication and processing time, can be executed in
parallel and overlapped. In our simulation, we consider the
detailed execution time of each component and their potential
overlapping in the pipeline. The simulator counts the amount
of on/off-chip communications and computations, which is
used to estimate the related energy consumption according to
the analytical model proposed in [36]. Additionally, to accu-
rately estimate the area consumption, we used the Synopsys
Design Compiler with the TSMC 45 nm standard library to
synthesize and generate the waveform activity file to capture
the dynamic switching activity of the logic gates. We use Cacti
6.0 [37] to estimate the area, power, and access latency of all
types of on-chip buffers. Specifically, we analyzed most of the
accelerator components, including PEs, the controller, on-chip
buffers, NoCs, and other hardware components.

Accelerator Modeling : We implemented the I-DGNN
including 32 × 32 PEs interconnected by a torus topology.
Each PE consists of a dense local buffer, a sparse graph
structure data buffer, a router interface, a post-processing

1045

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



0E+0

2E+7

4E+7

6E+7

8E+7

1E+8

R
e

-A
lg

o
ri

th
m

In
c-

A
lg

or
it

h
m

P
-A

lg
o

ri
th

m

(a)PM

Th
e

n
um

b
er

o
f

A
ri

th
m

et
ic

 O
p

er
at

io
n

s

0E+0

2E+8

4E+8

6E+8

8E+8

1E+9

1E+9

R
e-

A
lg

o
ri

th
m

In
c-

A
lg

or
it

h
m

P-
A

lg
or

it
h

m

(b)RD

0E+0

4E+7

8E+7

1E+8

2E+8

2E+8

R
e-

A
lg

o
ri

th
m

In
c-

A
lg

or
it

h
m

P-
A

lg
or

it
h

m

(d)TW

0E+0

1E+9

2E+9

3E+9

4E+9

5E+9

6E+9

R
e-

A
lg

o
ri

th
m

In
c-

A
lg

or
it

h
m

P-
A

lg
or

it
h

m

(c)MB

0E+0

4E+7

8E+7

1E+8

2E+8

2E+8

2E+8

R
e-

A
lg

o
ri

th
m

In
c-

A
lg

or
it

h
m

P-
A

lg
or

it
h

m

(e)WD

0E+0

1E+10

2E+10

3E+10

4E+10

5E+10

R
e

-A
lg

o
ri

th
m

In
c-

A
lg

or
it

h
m

P
-A

lg
o

ri
th

m

(f)FK

0E+0

2E+9

4E+9

6E+9

8E+9

1E+10

R
e

-A
lg

o
ri

th
m

In
c-

A
lg

or
it

h
m

P
-A

lg
o

ri
th

m

(g)Average

Necessary computations Redundant computations

62.9%

66.1%
65.7% 65.7%

61.7%

65.6%

25.0%

55.0%

33.9% 33.8%

65.6%

30.0% 33.9%

65.7%

Fig. 10. Comparison of the number of the arithmetic operations for each
dataset with Recomputing Algorithm (Re-Algorithm), Incremental Algorithm
(Inc-Algorithm), and the proposed algorithm (P-Algorithm).
unit(PPU), a buffer controller, multipliers, adders, and required
logic. Each PE includes a 4 × 4 multiplier array connected to
an accumulation unit with 4 × 4 adders. The on-chip frequency
of the I-DGNN is 700MHz. The global buffer capacity of
the I-DGNN is 64MB. The sparse graph structure data buffer
capacity of each PE is 128KB. The dense local buffer capacity
of each PE is 100KB.

Baselines : We compare the I-DGNN with three GNN
accelerators (ReaDy [1], DGNN-Booster [2], and RACE [3]).
The baseline accelerators are scaled to be equipped with the
same number of multipliers and off-chip/on-chip bandwidth as
the I-DGNN. ReaDy uses a hierarchical architecture consisting
of a mesh-based PE array for both the GNN kernel and
RNN kernel and its computation resources are partitioned
according to the workloads of the kernels. RACE uses an
engine-based architecture consisting of a GNN engine for the
GNN kernel and an RNN engine for the RNN kernel. The PEs
are connected by a crossbar in each engine. Each PE contains
a multiplier, an adder, and six MUXes. The computation
resources are divided into two groups with the same number of
PEs for the two engines according to the original configuration.
We also resized the baseline accelerators to be equipped with
the same on-chip storage capacity and frequency.

Datasets and Benchmarks: Table I illustrates six dynamic
graphs used for evaluation in this paper [16], [38]–[42]. We
consider one typical DGCN model [16], including GCN [43]
and LSTM models [44]. The 32-bit floating-point representa-
tion is used in the evaluation, which proves to be sufficient
for maintaining inference accuracy [45]–[47].

B. Arithmetic Operation Analysis

Fig. 10 shows the breakdown of arithmetic operations for
different algorithms. In order to examine the effectiveness of
the proposed algorithm, we use breakdown to include both
redundant computations (caused by both the data and model)
and essential computations (for ensuring the correctness of
graph update). We can observe that the proposed algorithm
reduces the amount of redundant arithmetic operations by
65.7% and 33.9% for DGNN execution using a classic DGCN
model [16], on average across multiple datasets, when com-
pared to the baselines. The proposed algorithm outperforms
previous approaches for several reasons. Firstly, similar to
traditional incremental computing [1], the proposed acceler-
ator exploits the graph dissimilarity between snapshots and
only processes their evolved graph structures. In addition to

0E+0

1E+7

2E+7

3E+7

4E+7

5E+7

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(a)PM

2E+5

1E+7

3E+7

5E+7

7E+7

D
R
A
M

A
cc
es
s
B
re
ak
do

w
n

0E+0

8E+7

2E+8

2E+8

3E+8

4E+8

R
e
-A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(b)RD

2E+6

1E+8

2E+8

3E+8

4E+8

0E+0

2E+8

4E+8

6E+8

8E+8

1E+9

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(c)MB

5E+6

3E+8

5E+8

7E+8

9E+8

0E+0

1E+7

2E+7

3E+7

4E+7

5E+7

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(d)TW

2E+5

2E+7

3E+7

4E+7

5E+7

0E+0

1E+7

2E+7

4E+7

5E+7

6E+7

7E+7

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(e)WD

3E+5

2E+7

3E+7

4E+7

6E+7

0E+0

2E+9

4E+9

5E+9

7E+9

9E+9

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(f)FK

7E+7

6E+8

4E+9

7E+9

1E+10

0E+0

4E+8

8E+8

1E+9

2E+9

2E+9

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(g)Average

9E+7

8E+8

1.5E+9

2E+9

3E+9
73.1%

52.9%
77.6%

86.1%
78.0%

64.0%

78.6%

42.1%

78.1%

60.1%

72.6%

50.7%

72.5%
52.8%

Fig. 11. Comparison of the DRAM access breakdown for each dataset with
baseline and proposed algorithms.
prior work, the developed one-pass computing kernels can
efficiently eliminate the need to recompute the entire GNN
kernel, thus eliminating the computations at each GNN layer.
In other words, the fused GNN model can avoid a significant
amount of intermediate computation during the graph update
stage. Given the proposed model, the output of GNN kernel is
relatively smaller than prior work, as it only includes essential
information related to a limited set of graph structures. As
such, the RNN kernel also only processes a limited set
of output features from GNN kernel, reducing the overall
computation amount.

C. Off-chip DRAM Access Analysis

Fig. 11 illustrates the breakdown of the DRAM access
volume for each dataset using three different algorithms. A
lower value indicates a better performance. It is evident that
the proposed algorithm consistently outperforms the baselines.
The reduction in DRAM access varies across the datasets.
On average, the proposed design achieves 73.1% and 52.9%
reduction in DRAM access compared to the baselines. The
DRAM access volume includes memory access for weights,
adjacency matrix, input features, intermediate features, and
output features.

Compared to the conventional execution approach, the pro-
posed accelerator only preloads the weight matrices of the
GNN kernel for the initial snapshot. This approach differs from
the recomputing algorithm and the incremental algorithm,
where the weight matrices need to be preloaded to the on-chip
buffer for each snapshot. The recomputing algorithm accesses
all the input features of the latest snapshot from the off-chip
DRAM, writes back the intermediate features to the DRAM,
and reads the intermediate features from the DRAM for the
execution of the following GNN layers. The output features of
the recomputing algorithm are retained on-chip for the RNN
kernel execution. The incremental algorithm only fetches the
affected input features from the DRAM, but it needs to write
back the intermediate features and the output features of the
latest snapshot and read the intermediate features or the output
features from the DRAM for computation reuse. Our proposed
execution approach only requires the updated adjacency matrix
and the involved feature vectors related to the changes between
the consecutive snapshots.

D. Performance Analysis

Fig. 12 illustrates the execution time of the I-DGNN in
comparison to previous works, measured in terms of the total

1046

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



0E+0

7E+4

1E+5

2E+5

3E+5

4E+5

4E+5

R
e
aD

y

D
G
N
N
-B
o
os
te
r

R
A
C
E

I-
D
G
N
N

（g）Average

0E+0

1E+4

2E+4

3E+4

4E+4

5E+4

R
e
aD

y

D
G
N
N
-B
o
o
st
e
r

R
A
C
E

I-
D
G
N
N

（b）RD

0E+0

4E+4

7E+4

1E+5

1E+5

2E+5

R
e
aD

y

D
G
N
N
-B
o
os
te
r

R
A
C
E

I-
D
G
N
N

（c）MB

0E+0

1E+3

2E+3

4E+3

5E+3

6E+3

R
e
a
D
y

D
G
N
N
-B
o
os
te
r

R
A
C
E

I-
D
G
N
N

（d）TW

0E+0

1E+3

3E+3

4E+3

6E+3

7E+3

8E+3

R
e
a
D
y

D
G
N
N
-B
o
os
te
r

R
A
C
E

I-
D
G
N
N

（e）WD

0E+0

4E+5

8E+5

1E+6

2E+6

2E+6

R
e
aD

y

D
G
N
N
-B
o
o
st
e
r

R
A
C
E

I-
D
G
N
N

（f）FK

0E+0

2E+3

3E+3

5E+3

6E+3

8E+3

R
ea
D
y

D
G
N
N
-B
o
o
st
e
r

R
A
CE

I-
D
G
N
N

（a）PM

Ex
ec
u
ti
on

Ti
m
e
(C
yc
le
s)

Ex
ec
u
ti
on

Ti
m
e
(C
yc
le
s)

Ex
ec
u
ti
on

Ti
m
e
(C
yc
le
s)

Ex
ec
u
ti
on

Ti
m
e
(C
yc
le
s)

Ex
ec
u
ti
on

Ti
m
e
(C
yc
le
s)

Ex
ec
u
ti
on

Ti
m
e
(C
yc
le
s)

Ex
ec
u
ti
on

Ti
m
e
(C
yc
le
s)

58.8%

71.1%

65.9%
59.5%

70.7%

64.9%
58.1%

59.5%

64.8%

58.1%
61.3%

64.8%

43.9%

75.6%

76.1%

60.9%

70.8%
65.0%

81.9%

58.7%
65.8%

Fig. 12. Execution time comparison of ReaDy, DGNN-Booster, RACE, and I-DGNN for different datasets.

0

0.5

1

1.5

2

2.5

3

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(g)Average

0

0.5

1

1.5

2

2.5

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(f)FK

0

0.5

1

1.5

2

2.5

3

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(e)WD

0

0.5

1

1.5

2

2.5

3
R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(d)TW

0

0.5

1

1.5

2

2.5

3

3.5

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(c)MB

0

0.5

1

1.5

2

2.5

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(b)RD

0

0.5

1

1.5

2

2.5

3

R
e-
A
lg
o
ri
th
m

In
c-
A
lg
or
it
h
m

P-
A
lg
or
it
h
m

(a)PM

N
or
m
al
iz
ed

Ex
ec
u
ti
on

Ti
m
e 53.3%

60.7%
56.1%

35.0%

65.6%

38.1%

64.1%

48.2%

59.5%

46.0%

50.0%

26.0%

58.9%

44.6%

Fig. 13. Comparison of the normalized execution time for each dataset on
same accelerator architecture with baseline and proposed algorithms.

number of execution cycles. ReaDy and DGNN-Booster use
the recomputing algorithm, whereas RACE uses the incremen-
tal computing algorithm. The I-DGNN achieves, on average,
a 65.9%, 71.1%, and 58.8% reduction in execution time
compared to baselines for multiple GNN datasets, respectively.
RACE can reduce the DRAM access of the input features
and the redundant computation by exploiting the intermediate
features/output features of the previous snapshot. However, it
introduces DRAM access for the intermediate features, which
accounts for over 60% of the total DRAM access volume.
The heterogeneous architecture of RACE also introduces
hardware underutilization due to the imbalanced workload
between GNN and RNN kernels. ReaDy and DGNN-booster
can increase performance by providing snapshot-level and
kernel-level pipeline workflow, aiming to increase parallelism.
However, inter-kernel parallelism is not well exploited, and
their recomputing execution approach introduces redundant
computation and DRAM accesses.

Our proposed design can outperform baseline architectures
due to three reasons: reduced computation, on-chip communi-
cation optimization, and off-chip communication optimization.
Specifically, benefiting from the proposed execution algorithm,
we eliminate redundant computation and reduce computational
complexity. We also eliminate all off-chip communication un-
related to the graph update between the consecutive snapshots.
Furthermore, the proposed pipeline workflow can fully utilize
the hardware resources and reduce memory access latency for
storing and loading intermediate data between GNN and RNN
kernels. Fig. 13 illustrates the normalized execution time of
the proposed algorithm in comparison to baseline algorithms
with same hardware architecture. The proposed algorithm
achieves, on average, 58.9% and 44.6% reduction in execution
time compared to the baseline algorithms. Our proposed
reconfigurable PE architecture also plays an important role
in providing adequate communication patterns and balanced

0

2

4

6

8

10

12

R
ea
D
y

D
G
N
N
-B
o
os
te
r

R
A
CE

I-
D
G
N
N

R
ea
D
y

D
G
N
N
-B
o
os
te
r

R
A
CE

I-
D
G
N
N

R
ea
D
y

D
G
N
N
-B
o
os
te
r

R
A
CE

I-
D
G
N
N

R
ea
D
y

D
G
N
N
-B
o
os
te
r

R
A
CE

I-
D
G
N
N

R
ea
D
y

D
G
N
N
-B
o
os
te
r

R
A
CE

I-
D
G
N
N

R
ea
D
y

D
G
N
N
-B
o
os
te
r

R
A
CE

I-
D
G
N
N

R
ea
D
y

D
G
N
N
-B
o
os
te
r

R
A
CE

I-
D
G
N
N

(a)PM (b)RD (c)MB (d)TW (e)WD (f)FK (g)Average

N
or
m
.E
n
er
gy

C
on

su
m
pt
io
n
B
re
ak
d
o
w
n

8.6

7.1

88.4%

87.0%

3.87
3.49

17.7 10.1

8.5

6.9

8.6 8.1

4.1

10.2

8.5

6.2

9.2
8.6

6.2

9.1

8.8

6.6
7.7

85.9%

Fig. 14. Comparison of the Normalized Energy Consumption Breakdown for
different datasets (Normalized to the energy consumption of the I-DGNN).
computation workload to support GNN and RNN kernels at
the same time, resulting in improved parallelism of the overall
execution and eliminating inter-kernel data communication. It
should be noted that the intermediate data between kernels is
much larger than weight matrices.

The proposed design performs 2.8-4.2× better than ReaDy,
2.4-4.1× better than DGNN-Booster, and 1.8-5.5× better than
RACE. The performance gain on the PubMed dataset is more
significant when compared to other datasets, because the
vertex-to-edge ratio in PubMed is smaller than that of other
datasets. This could result in a more significant workload
imbalance between GNN (depending on vertex and edge
count) and RNN (depending on vertex count only) kernels. In
such a case, RACE, employing a heterogeneous architecture,
suffer from such a significant workload imbalance issue.

E. Energy Efficiency Analysis

In the energy analysis, it is important to highlight that the
evaluation encompasses the energy consumption of the entire
execution process. This includes energy consumption related
to computation, on-chip communication, off-chip communi-
cation, and control & configuration. Figure 14 provides an
overview of the breakdown analysis, showing the normalized
energy consumption of the I-DGNN. As shown, the I-DGNN
achieves an average reduction of 88.4%, 87.0%, and 85.9%
in energy consumption for each dataset compared to the base-
lines. These values are normalized to the energy consumption
of the I-DGNN. The primary drivers behind these energy sav-
ings can be attributed to several factors. These include reduced
DRAM accesses, decreased computation, and minimized on-
chip communication latency. These improvements are achieved
through various strategies, such as reducing inter-kernel data
on-chip communication, alleviating communication contention
through the proposed dataflow and mapping, and reducing
DRAM access and computation amounts as mentioned in
detail previously. The energy consumption of control and

1047

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



4.65

2.60 2.31

3.19

0

1

2

3

4

5

6

R
ea
D
y

D
G
N
N
-B
o
o
st
e
r

R
A
C
E

A
ve
ra
ge

I-
D
G
N
N

R
ea
D
y

D
G
N
N
-B
o
o
st
e
r

R
A
C
E

A
ve
ra
ge

I-
D
G
N
N

R
ea
D
y

D
G
N
N
-B
o
o
st
e
r

R
A
C
E

A
ve
ra
ge

I-
D
G
N
N

R
ea
D
y

D
G
N
N
-B
o
os
te
r

R
A
C
E

A
ve
ra
ge

I-
D
G
N
N

0-5% 5%-10% 10%-15% Average

N
or
m
.E
xe
cu
ti
on

Ti
m
e

68.7%
56.7%

61.5%

78.5%

Fig. 15. The sensitivity study of graph dissimilarity proportion between con-
secutive snapshots for the proposed and baseline accelerators (Normalized to
the execution time of the I-DGNN with same graph dissimilarity proportion).

configuration accounts for less than 3% of the overall energy
consumption.

F. Sensitivity Analysis

Since the proportion of dissimilarity between consecutive
snapshots varies from 4.1% to 13.3% [3], we also changed
the proportion to demonstrate that I-DGNN consistently out-
performs baseline accelerators across different proportions.
Figure 15 shows the normalized execution time when changing
the proportion of dissimilarity between consecutive snapshots
from 0% to 15% using the Wikipedia dataset. The execution
time of the baseline accelerators is normalized to the execution
time of the I-DGNN with the same graph dissimilarity ratio.
The I-DGNN achieves 78.5%, 61.5%, and 56.7% reduction
in execution time compared to baselines as the proportion of
dissimilarity between consecutive snapshots changes from 0%
to 15%. Even though the performance speedup of I-DGNN
becomes smaller when dissimilarity decreases, the proposed
one-pass kernel can still eliminate a large number of interme-
diate features and computations as compared to prior work.
From this study, we conclude that the performance gains of
our proposed algorithm diminish when dissimilarity and GNN
layer count increase. The proportion of dissimilarity types
between consecutive snapshots varies, so we also adjusted the
ratio of addition and deletion operations to demonstrate that
I-DGNN is robust across different proportions of dissimilarity
types. Figure 16 shows the normalized execution time when
changing the proportion of dissimilarity type between consec-
utive snapshots from 75%-25% (75% addition and 25% dele-
tion) to 25%-75% (25% addition and 25% deletion) using the
WD dataset. The execution time of the baseline accelerators is
normalized to the execution time of the I-DGNN with the same
dissimilarity types ratio. As depicted, the execution time of the
I-DGNN could change under different addition and deletion
ratios. The deletion operation is fairly time-consuming, and
performing more deletions will lead to an increase in the total
execution time. Nevertheless, our solution aims to reduce the
total number of intermediate data used for DGNN, which is
orthogonal to CommonGraph [12].

G. Scalability Analysis

We evaluate the scalability of the proposed architecture by
varying the dimension of the unified PE array. The array
size is scaled from 32 to 4096. All performance metrics are
measured in cycles and normalized to the performance of the

1.00

1.15

1.34

1.00

1.10

1.24

1.00

1.04
1.11

1.00

1.09

1.24

1.00

1.12

1.30

1.00

1.10

1.23

1.00

1.10

1.24

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

N
o
rm

.E
xe
cu
ti
o
n
Ti
m
e

9.0%

19.4%

Fig. 16. The sensitivity study of addition and deletion operations ratio be-
tween consecutive snapshots on the I-DGNN for various datasets (Normalized
to the execution time of ratio 75%-25% (75% addition and 25% deletion)).

0

10

20

30

40

50

60

32PEs 64PEs 128PEs 256PEs 512PEs 1024PEs 2048PEs 4096PEs

N
o
rm

.E
xe
cu
ti
o
n
Ti
m
e

PM

RD

MB

TW

WD

FK

Fig. 17. Scalability study of I-DGNN across different datasets with different
PE sizes (Normalized to the execution time with 32 PEs).

4×4 dimension. The execution time of the I-DGNN running
at the same frequency with different PE counts is depicted in
Figure 17. The I-DGNN can achieve nearly linear speedups
when the number of PEs is smaller than 512, showing ideal
scalability. When the number of PEs increases further from
512 to 4096, the performance of the I-DGNN can be improved
by 1.4× on average once the number of PEs has a 2× increase,
showing adequate scalability even though the off-chip memory
bandwidth limits the performance.

H. MACs and Buffer Utilization Analysis

We evaluate the MAC units and buffer utilization of the
proposed architecture using the WD dataset. The utilization of
the MAC units is shown in Figure18(a). The dynamic hardware
configuration can be completed within 16 cycles to balance the
workload among MAC units, allowing most of the execution
to benefit from the proposed analytical model for pipelining
DGNN kernels. The buffer capacity utilization is illustrated
in Figure18(b). During the computation process, intermediate
results are gradually generated and stored in the buffer. The
buffer capacity is nearly fully utilized after 120 cycles.

I. Area Consumption Analysis

Fig.19 (a) shows the breakdown of the overall area of the
I-DGNN. This includes the PE, global buffer, interconnects,
and logic components for control and configuration. The PE
array accounts for 36.06% of the total chip area. The on-
chip global buffer makes up 58.89% of the chip area. The
torus interconnect uses 4.6% of the chip area. The controller’s
area consumption is negligible at 0.45% of the total chip area.
Fig.19 (b) provides a breakdown of area consumption for the
proposed PE. The MACs array accounts for 42.53% of the total
PE area, while the sparse graph structure buffer and dense local
buffer account for 25.51% and 31.89% respectively. The PE

1048

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



M
A

C
 U

n
it

 U
ti

li
za

ti
o

n

B
u

ff
e

r
C

a
p

a
ci

ty
U

ti
li

za
ti

o
n

(a) (b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Cycles

0.4

0.5

0.6

0.7

0.8

0.9

1

20 60 100 140 180 220 260 300

Cycles

Fig. 18. (a) Average MAC unit utilization, (b) average buffer utilization.
reconfigurable Muxes and local control logic have a negligible
area consumption of 0.07% of the total PE area.

VII. RELATED WORK

Despite significant efforts in dynamic graph analytics and
DGNNs, the proposed I-DGNN framework is the first work
that identifies the evolving graph components and their inter-
actions with multi-GNN layers.

Dynamic Graph Neural Network Accelerators: To accel-
erate the computations of DGNNs, several customized acceler-
ators [1]–[3] have been proposed. The prior research provided
a comprehensive workload characterization of DGNNs and
demonstrated the improved performance and energy efficiency
of specialized architecture as compared to GPUs. DGNN-
Booster [2], an FPGA DGNN inference accelerator, uses a
message-passing mechanism for the GNN kernel, but fol-
lows the recomputation computing paradigm in which each
snapshot is processed by GNNs individually. ReaDy [1],
a ReRAM-based DGNN inference accelerator, implements
redundancy-free data scheduling and inter-kernel pipelining
to enhance efficiency, but it shares a similar concern with
DGNN-Booster. RACE [3] employs a heterogeneous archi-
tecture for GNN and RNN kernel with incremental computing
graph algorithm. This algorithm only processes the dissimilar
graph components between snapthots, but introduces extra
storage overhead and memory access due to the duplicated
intermediate data. Neither Race [3] nor DGNN-Booster [2]
fully reveals the dynamic interactions between snapshots and
GNN models.

Optimizations for Evolving Graph Analytics: In evolving
computing scheme, multiple snapshots are processed simul-
taneously when available. For instance, CommonGraph and
MEGA [12], [48] identified the high computational overhead
associated with graph deletion operations, and thus convert-
ing expensive deletion operations into addition operations
by leveraging the mutually inclusive graph structure across
snapshots. However, this evolving computing paradigm has
limited applicability to DGNN executions with discrete graphs.
First, evolving computing relies on pre-processing to identify a
mutually inclusive subgraph among multiple snapshots, which
is inefficient for handling real-time graphs. Additionally, the
redundant computations involved in the GNN pipeline are not
addressed. Our proposed method can be integrated with this
evolving computing paradigm to overcome the aforementioned
limitations, enabling efficient acceleration of DGNN execution
with evolving graphs.

Dynamic Graph Processing Accelerator: On the other
hand, a significant amount of accelerator architectures [49]–

PE GLB Network Logic Components

Spase Buffer (GSB) Dense Buffer (LB)
Muxes MACs
Local Control Logic

(a) Overall Area Consumption Breakdown (b) PE Area Consumption Breakdown

25.51%

31.89%

42.53%

0.01%

0.06%

36.06%

58.89%

4.60%
0.45%

Fig. 19. (a) Area Breakdown of the I-DGNN, and (b) area breakdown of the
proposed PE.

[56] have been proposed to optimize dynamic graph pro-
cessing. For example, Coup [57] proposed a modified graph
traversal algorithm tailored for dynamic graphs which can
minimize read/write memory access. Additionally, Basak et
al. [56] have proposed an accelerator that sorts streaming
edges to improve data locality and execution speed on a
conventional graph accelerator. However, those graph pro-
cessing accelerators have not well considered the combined
challenges from both GNN and RNN kernels. The proposed
one-pass computation method can be efficiently applied to
dynamic graph processing through a slight modification. It
still can eliminate the repeated read/write memory access and
computations.

VIII. CONCLUSION

In this paper, we propose I-DGNN, a theoretical, architec-
tural, and algorithmic framework with the aim of designing
scalable and efficient accelerators for DGNN execution with
improved performance and energy efficiency. On the theory
side, the key idea is to identify essential computations between
consecutive graph snapshots and encapsulate them as a sepa-
rate kernel independent from the DGNN model. Specifically,
the proposed one-pass DGNN computing model extracts the
process of graph update as a chained matrix multiplica-
tion between evolving graphs through rigorous mathematical
derivations. Consequently, consecutive snapshots utilize a one-
pass computation kernel instead of passing through the entire
DGNN execution pipeline, thereby eliminating the costly data
movement of intermediate results across DGNN layers. On the
architecture side, we propose a unified accelerator architecture
that can be dynamically configured to support the computation
characteristics of the proposed I-DGNN computing model with
improved data and pipeline parallelism. On the algorithm side,
we propose a new dataflow and mapping tailored for I-DGNN
to further improve the data locality of inter-kernel data across
the DGNN pipeline. Simulation results show that the proposed
accelerator achieves 65.9%, 71.1%, and 58.8% reductions in
execution time and 88.4%, 87.0%, and 85.9% improvements in
energy efficiency on average across multiple DGNN datasets
compared to state-of-the-art-accelerators [1]–[3].

ACKNOWLEDGEMENTS

This research was partially supported by NSF grants CCF-
1901165, CCF-195398, CCF-2131946, CCF-1901165, and
CNS-2321224. We sincerely thank the anonymous reviewers
for their excellent and constructive feedback.

1049

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Yu Huang, Long Zheng, Pengcheng Yao, Qinggang Wang, Haifeng
Liu, Xiaofei Liao, Hai Jin, and Jingling Xue. Ready: A reram-based
processing-in-memory accelerator for dynamic graph convolutional net-
works. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(11):3567–3578, 2022.

[2] Hanqiu Chen and Cong Hao. Dgnn-booster: A generic fpga accel-
erator framework for dynamic graph neural network inference. In
Proceedings of the IEEE 31st Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 195–201,
2023.

[3] Hui Yu, Yu Zhang, Jin Zhao, Yujian Liao, Zhiying Huang, Donghao He,
Lin Gu, Hai Jin, Xiaofei Liao, Haikun Liu, et al. Race: An efficient
redundancy-aware accelerator for dynamic graph neural network. ACM
Transactions on Architecture and Code Optimization, 20(4):1–26, 2023.

[4] Jinyin Chen, Xueke Wang, and Xuanheng Xu. Gc-lstm: Graph con-
volution embedded lstm for dynamic network link prediction. Applied
Intelligence, pages 1–16, 2022.

[5] Kai Lei, Meng Qin, Bo Bai, Gong Zhang, and Min Yang. Gcn-gan:
A non-linear temporal link prediction model for weighted dynamic
networks. In Proceedings of the IEEE conference on computer com-
munications (INFOCOM), pages 388–396. IEEE, 2019.

[6] Pete Burnap, Omer F Rana, Nick Avis, Matthew Williams, William
Housley, Adam Edwards, Jeffrey Morgan, and Luke Sloan. Detecting
tension in online communities with computational twitter analysis.
Technological Forecasting and Social Change, 95:96–108, 2015.

[7] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis,
and Sambavi Muthukrishnan. One trillion edges: Graph processing at
facebook-scale. VLDB Endowment, 8(12):1804–1815, 2015.

[8] Lubos Takac and Michal Zabovsky. Data analysis in public social
networks. In Proceeding of the International scientific conference and
international workshop present day trends of innovations, volume 1,
2012.

[9] N Laptev and S Amizadeh. Yahoo anomaly detection dataset s5. URL
http://webscope. sandbox. yahoo. com/catalog. php, 2015.

[10] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled
Ammar, Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta,
Peter A Boncz, et al. The future is big graphs: a community view on
graph processing systems. Communications of the ACM, 64(9):62–71,
2021.

[11] Venkatesan T Chakaravarthy, Shivmaran S Pandian, Saurabh Raje,
Yogish Sabharwal, Toyotaro Suzumura, and Shashanka Ubaru. Efficient
scaling of dynamic graph neural networks. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–15, 2021.

[12] Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and
Rajiv Gupta. Commongraph: Graph analytics on evolving data. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, volume 2,
pages 133–145, 2023.

[13] George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis.
Transfer graph neural networks for pandemic forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages
4838–4845, 2021.

[14] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min
Deng, and Haifeng Li. T-gcn: A temporal graph convolutional network
for traffic prediction. IEEE transactions on intelligent transportation
systems, 21(9):3848–3858, 2019.

[15] Osman Asif Malik, Shashanka Ubaru, Lior Horesh, Misha E Kilmer, and
Haim Avron. Dynamic graph convolutional networks using the tensor
m-product. In Proceedings of the SIAM international conference on data
mining (SDM), pages 729–737. SIAM, 2021.

[16] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro
Suzumura, Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles
Leiserson. Evolvegcn: Evolving graph convolutional networks for
dynamic graphs. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 5363–5370, 2020.

[17] Hongxia Yang. Aligraph: A comprehensive graph neural network
platform. In Proceedings of the 25th ACM SIGKDD International
Conference on knowledge Discovery & Data Mining, pages 3165–3166,
2019.

[18] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. Representation learning for

dynamic graphs: A survey. Journal of Machine Learning Research,
21(70):1–73, 2020.

[19] ZhengZhao Feng, Rui Wang, TianXing Wang, Mingli Song, Sai Wu,
and Shuibing He. A comprehensive survey of dynamic graph neural net-
works: Models, frameworks, benchmarks, experiments and challenges.
arXiv preprint arXiv:2405.00476, 2024.

[20] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Proceedings of International Conference
on Neural Information Processing Systems (NIPS), pages 1025–1035.
ACM, 2017.

[21] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How pow-
erful are graph neural networks? In arXiv preprint arXiv:1810.00826,
2018.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[23] Hongxi Li, Zuxuan Zhang, Dengzhe Liang, and Yuncheng Jiang. K-truss
based temporal graph convolutional network for dynamic graphs. In
Asian Conference on Machine Learning, pages 739–754. PMLR, 2024.

[24] Fan Zhou, Xovee Xu, Ce Li, Goce Trajcevski, Ting Zhong, and Kunpeng
Zhang. A heterogeneous dynamical graph neural networks approach to
quantify scientific impact. arXiv preprint arXiv:2003.12042, 2020.

[25] Guangyin Jin, Lingbo Liu, Fuxian Li, and Jincai Huang. Spatio-temporal
graph neural point process for traffic congestion event prediction. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pages 14268–14276, 2023.

[26] Samira Khodabandehlou and Alireza Hashemi Golpayegani. Fifraud:
unsupervised financial fraud detection in dynamic graph streams. ACM
Transactions on Knowledge Discovery from Data, 18(5):1–29, 2024.

[27] John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph
theory. Springer, 2008.

[28] Tayo Oguntebi and Kunle Olukotun. GraphOps: A dataflow library for
graph analytics acceleration. In Proceedings of ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA). ACM,
2016.

[29] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman
Parashar, Vivek Sarkar, and Tushar Krishna. Understanding reuse,
performance, and hardware cost of DNN dataflow: A data-centric
approach. In Proceedings of IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 754–768. IEEE, 2018.

[30] Raveesh Garg, Eric Qin, Francisco Munoz-Mart’inez, Robert Guirado,
Akshay Jain, S. Abadal, Jos’e L. Abell’an, Manuel E. Acacio, Eduard
Alarc’on, Sivasankaran Rajamanickam, and Tushar Krishna. Under-
standing the design space of sparse/dense multiphase dataflows for
mapping graph neural networks on spatial accelerators. In Proceedings
of IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 571–582. IEEE, 2021.

[31] Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie,
Haoran You, Martin Herbordt, Yingyan Lin, and Ang Li. I-GCN: A
graph convolutional network accelerator with runtime locality enhance-
ment through islandization. In Proceedings of IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1051–1063. IEEE,
2021.

[32] Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. Gcnax:
A flexible and energy-efficient accelerator for graph convolutional neural
networks. In Proceedings of IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 775–788, 2021.

[33] Cen Chen, Kenli Li, Yangfan Li, and Xiaofeng Zou. Regnn: A
redundancy-eliminated graph neural networks accelerator. In Proceed-
ings of IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 429–443. IEEE, 2022.

[34] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. IEEE journal of solid-state circuits, 52(1):127–138,
2016.

[35] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A
cycle accurate memory system simulator. IEEE computer architecture
letters, 10(1):16–19, 2011.

[36] Mark Horowitz. Energy table for 45nm process. In Stanford VLSI wiki.
2014.

[37] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P
Jouppi. Cacti 6.0: A tool to understand large caches. University of
Utah and Hewlett Packard Laboratories, Tech. Rep, 147, 2009.

[38] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep em-
bedding method for dynamic graphs. arXiv preprint arXiv:1805.11273,
2018.

1050

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 



[39] Ryan Rossi and Nesreen Ahmed. The network data repository with
interactive graph analytics and visualization. In Proceedings of the AAAI
conference on artificial intelligence, volume 29, 2015.

[40] Wikidata. Retrieved from https://github.com/mniepert/mmkb/tree/
master/TemporalKGs/wikidata. Accessed: 2024.

[41] Flickr. Retrieved from https://www.kaggle.com/datasets/hsankesara/
flickr-image-dataset. Accessed: 2024.

[42] Mobile. Retrieved from https://dblp.uni-trier.de/xml/. Accessed: 2024.
[43] Thomas N Kipf and Max Welling. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
[44] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to for-

get: Continual prediction with lstm. Neural computation, 12(10):2451–
2471, 2000.

[45] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. Representation learning for
dynamic graphs: A survey. Journal of Machine Learning Research,
21(70):1–73, 2020.

[46] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun
Ye, Zhimin Zhang, Dongrui Fan, and Yuan Xie. Hygcn: A gcn acceler-
ator with hybrid architecture. In Proceeding of the IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
15–29. IEEE, 2020.

[47] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier
Bresson. Structured sequence modeling with graph convolutional recur-
rent networks. In Proceeding of 25th International Conference, pages
362–373. Springer, 2018.

[48] Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and
Rajiv Gupta. Mega evolving graph accelerator. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 310–323, 2023.

[49] Andrey Ayupov, Serif Yesil, Muhammet Mustafa Ozdal, Taemin Kim,
Steven Burns, and Ozcan Ozturk. A template-based design method-
ology for graph-parallel hardware accelerators. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(2):420–
430, 2017.

[50] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov,
John Greth, Steven Burns, and Ozcan Ozturk. Energy efficient ar-
chitecture for graph analytics accelerators. ACM SIGARCH Computer
Architecture News, 44(3):166–177, 2016.

[51] Mark C Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel
Sanchez. A scalable architecture for ordered parallelism. In Proceedings
of the 48th international symposium on microarchitecture, pages 228–
241, 2015.

[52] Mark C Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer,
and Daniel Sanchez. Data-centric execution of speculative parallel
programs. In Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[53] Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta. Graphpulse: An
event-driven hardware accelerator for asynchronous graph processing.
In Proceedings of the 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 908–921. IEEE, 2020.

[54] Shafiur Rahman, Mahbod Afarin, Nael Abu-Ghazaleh, and Rajiv Gupta.
Jetstream: Graph analytics on streaming data with event-driven hardware
accelerator. In Proceedings of the 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 1091–1105, 2021.

[55] Qinggang Wang, Long Zheng, Yu Huang, Pengcheng Yao, Chuangyi
Gui, Xiaofei Liao, Hai Jin, Wenbin Jiang, and Fubing Mao. Grasu:
A fast graph update library for fpga-based dynamic graph processing.
In Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 149–159, 2021.

[56] Abanti Basak, Zheng Qu, Jilan Lin, Alaa R Alameldeen, Zeshan Chishti,
Yufei Ding, and Yuan Xie. Improving streaming graph processing
performance using input knowledge. In Proceedings of the 54th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 1036–
1050, 2021.

[57] Guowei Zhang, Webb Horn, and Daniel Sanchez. Exploiting commuta-
tivity to reduce the cost of updates to shared data in cache-coherent
systems. In Proceedings of the 48th International Symposium on
Microarchitecture, pages 13–25, 2015.

1051

Authorized licensed use limited to: University of Central Florida. Downloaded on September 17,2025 at 00:24:16 UTC from IEEE Xplore.  Restrictions apply. 


