
ARIES: Accelerating Distributed Training in Chiplet-based
Systems via Flexible Interconnects

Lingxiang Yin1, Amir Ghazizadeh1, Ahmed Louri2, Hao Zheng1

1Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA
2Department of Electrical and Computer Engineering, George Washington University, Washington, D.C., USA

1{lingxiang.yin, amir.g, hao.zheng}@ucf.edu, 2louri@gwu.edu

Abstract—Large-scale deep learning models are widely deployed in
many application domains with remarkable performance improvements.
However, training these models with immense parameters calls for
unprecedented computing and communication capabilities. Recently,
chiplet-based architectures have shown much promise in scaling Deep
Neural Network (DNN) inference, but their applications in the training
phase remain unexplored and challenging.

In this paper, we posit, beyond scaling computing capability, chiplet-
based architectures could also be leveraged to enable new optimization
opportunities for existing parallel training algorithms (e.g., Ring and
Tree-based all-reduce). Specifically, we aim to explore a variety of
topological characteristics, along with the interposer technology, to
sustain the performance scaling of parallel training in chiplet-based
systems. We propose ARIES, a versatile chiplet-based communication
architecture supporting various parallel training algorithms using a
flexible interconnect design. The proposed design can adapt to various
collective operations such as reduce and gather across a wide diversity of
training algorithms. Moreover, such flexibility is also leveraged to further
enhance existing all-reduce algorithms depending on the latency and
bandwidth requirements of the DNN model and dataset size. Simulation
results show that the proposed ARIES can achieve up to 3.92× speedup
in execution time and 38.8% reduction in Network-on-Chip (NoC) energy
consumption when compared to prior work.

Index Terms—DNNs, parallel training, chiplets, collective operations

I. INTRODUCTION

Deep learning is pervasive across numerous application domains
such as computer vision, natural language processing, and speech
recognition [1]–[4]. Despite the pervasiveness, the prominent success
of deep learning relies on the continued increase of model size and
complexity with billions of parameters [5], [6]. The training process
for these complex and highly parameterized models is both time-
consuming and costly, and thus it is posing unprecedented computa-
tional and communication challenges on the underlying hardware.

Chiplet-based technology has shown much promise in scaling deep
learning inference with extended computing capability, but existing
solutions [7], [8] have very limited applicability to the training
phase. The primary barrier is the distinct communication character-
istics presented in various parallel training algorithms. For example,
Simba [7] exploited the benefits of chiplet architectures to sustain
the performance scaling for deep neural network (DNN) inference
in a cost-effective manner, but the inter-chiplet communication issue
remains a challenge given the adoption of a traditional mesh topology.
However, inter-chiplet communication is inevitable in a distributed
DNN training system, as the gradients must be accumulated and
exchanged among chiplets to achieve optimal convergence rate and
model accuracy. In addition, SPACX [8] leverages the salient feature
of silicon photonics to facilitate broadcast communications for DNN
inference. Even though the broadcast capability can improve the
spatial locality when performing DNN computations, it is unlikely
to benefit distributed training where its gradient reduction (e.g., hop-
by-hop data movement) is the primary concern.

On the other hand, current parallel training algorithms are primarily
developed for distributed computing systems with compromised

performance due to the agnostic nature and rigidity of their network
topologies. For example, ring-based all-reduce and its variants are
applicable to a wide range of topologies thanks to their simplicity.
However, such simplicity comes with significant network resource
under-utilization and long latency (i.e. gradient update), as this latter
is bounded by the long ring diameter. Tree-based all-reduce provides
a logarithmic reduction in network diameter, but, unfortunately, it
could potentially suffer from network contention and bandwidth issue
when deployed in a grid-like topology. Afterward, high-dimensional
ring (e.g., 2D ring) and multi-tree (e.g., binary tree) are proposed
to reduce the ring diameter and improve tree bandwidth. However,
unlike off-chip networks, such high-dimensional properties are unable
to be adequately managed on chips due to cost and power limits.

In this paper, we explore alternative topological characteristics to
sustain the performance scaling of the ring and the tree-based all-
reduce in chiplet-based systems from both interconnect and algorithm
standpoints. The crux of our idea is to synergize the hardware and
algorithm designs to leverage the characteristics of hierarchical and
concentrated topology, rather than high dimensionality, to maintain
the performance scaling of all-reduce in chiplet-based systems.
Specifically, we propose ARIES, an efficient communication frame-
work, along with improved all-reduce algorithms, for parallel training
in chiplet-based systems. We identify that network resource utilization
could be a critical factor to reflect the communication performance of
all-reduce collectives in addition to generic metrics (e.g., diameter and
bi-section bandwidth). Furthermore, a flexible interconnect design is
proposed to enable various means of hierarchical and concentrated
optimizations increasing the network utilization in ring and tree-
structured all-reduce. The proposed all-reduce algorithms are thus
tailored to align with on-chip topological characteristics to improve
overall throughput and reduce synchronization latency.

The specific contributions of this paper are listed as follows:
• ARIES Architecture: We propose a chiplet architecture that

supports a wide range of parallel training algorithms. The inter-
connect of the proposed ARIES architecture can decouple the
stiff connectivity between router ports and links. As such, intra-
router connectivity can be dynamically changed, maximizing
network resource utilization. In addition, a multi-function link
design is proposed to support both dynamic link segmentation
and connectivity, increasing overall link count and avoiding
traffic contention.

• ARIES All-reduce Algorithms: We revisit the major issues
of deploying all-reduce algorithms in conventional grid-like on-
chip topologies. As compared to off-chip counterparts, the pro-
posed all-reduce algorithms are optimized for on-chip networks
with low dimensions and are independent of the rigid and
agnostic network topology.

• Detailed Evaluation: We evaluate the proposed ARIES using
a cycle-accurate system simulation [9] with ResNet-50 [10],
VGG-16 [11], DLRM [12] and Transformer [13] benchmark

(c) Active Silicon Interposer(b) Passive Silicon Interposer

Package

Interposer

Chiplet
Core

Interposer

Package

Chiplet

Micro
bumps

Chiplet routers

Interposer routers

R R R R R RR R R

R R R

(a) Chiplet-based Architecture

R R R

Fig. 1: (a) Chiplet-based architecture, (b) passive interposer integra-
tion, and (c) active interposer integration.

suites. Our simulation results show that ARIES can achieve up
to 3.92× speedup in execution time and 38.8% reduction in
Network-on-Chip (NoC) energy consumption when compared
to prior work [14], [15].

II. BACKGROUND AND MOTIVATION

A. Chiplet-based Architectures

Advanced packaging technology has emerged to disintegrate a
large chip into multiple small chips, called chiplets, to increase
yield and reduce manufacturing costs. Chiplets are combined and
interconnected to compose a larger and more complex system.
Figure 1, shows the cross-section view of a chiplet-based design.
In this vertical stack-up, a silicon interposer is mounted on top of the
package to accommodate inter-chiplet communications. Additionally,
the chiplets are placed on an active or passive interposer. As shown
in Figure 1(a), passive interposer designs are simpler and primarily
serve as a routing layer, while active interposer designs contain active
components that can provide additional logic functionality, such as
signal processing or power management. The logical functionalities
could be utilized to speed up inter-chiplet communications. The
chiplet-based architectures are being used for many commercial
products [16], [17] and academic prototypes. However, to the best
of our knowledge, there are relatively few works to date that have
explored the chiplet-system design to support DNN training.

B. Distributed Deep Neural Network Training

Large-scale DNNs models necessitate substantial computational
resources for their training. To mitigate the computational burden
and complete the training process within an acceptable time frame,
numerous research has focused on distributed training techniques
aiming to accelerate the learning process [18]. The common approach
employed for training DNNs is data parallelism, which refers to
dispatching a model replica to each node, where a separate batch
of data is processed locally in parallel. [19] Concretely, each node
will produce a unique set of Local Gradients (LGs) w.r.t the loss
function that must be collected from all the nodes and then reduced
(e.g., summed or averaged). Once the reduction is performed, all
the nodes share the same parameters referred to as Global Gradients
(GGs), where the distributed system can optimize the parameters
using Stochastic Gradient Descent (SGD) [20]. In this paper, we focus
on data parallelism distributed training systems.

A distributed training task involves three steps regardless of the
DNN variants. (1) The forward pass to calculate the loss function,
(2) computing the gradients of the parameters w.r.t the loss using
backpropagation, and (3) optimizing the parameters using the SGD

Node	0

⁄𝜕𝐶 𝜕𝑊!

⁄𝜕𝐶 𝜕𝑊"

C

⁄𝜕𝐶 𝜕𝑊"#! ,…, ⁄𝜕𝐶 𝜕𝑊$

Local	Gradients	(LG)

Inputs
𝑤!

𝑤"

𝑤$, … , 𝑤"#!

Calculate Cost

Combine LGs from all nodes; resulting in GGs on each node

Global	Gradients	(GG)
𝐺𝐺% 𝐺𝐺! … 𝐺𝐺!&

Gather GGs from all nodes to synchronize final gradients

𝑤!

𝑤$

…

𝑤"

⁄𝜕𝐶 𝜕𝑊"

⁄𝜕𝐶 𝜕𝑊"#!

…

⁄𝜕𝐶 𝜕𝑊!

N
od
e	
co
m
m
un
ic
at
io
ns

𝑤! 𝑤$ 𝑤"
Parameters

…

Node	1

Inputs
𝑤!

𝑤"

𝑤$, … , 𝑤"#!

𝑤! 𝑤$ 𝑤"
Parameters

…

Node	15

Inputs
𝑤!

𝑤"

𝑤$, …, 𝑤"#!

𝑤! 𝑤$ 𝑤"
Parameters

…

⁄𝜕𝐶 𝜕𝑊!

⁄𝜕𝐶 𝜕𝑊"

C

⁄𝜕𝐶 𝜕𝑊"#! ,…, ⁄𝜕𝐶 𝜕𝑊$

Local	Gradients	(LG)

⁄𝜕𝐶 𝜕𝑊!

⁄𝜕𝐶 𝜕𝑊"

C

⁄𝜕𝐶 𝜕𝑊"#! ,…, ⁄𝜕𝐶 𝜕𝑊$

Local	Gradients	(LG)
𝐿𝐺%!&𝐿𝐺!!& … 𝐿𝐺!&!&

Global	Gradients	(GG) Global	Gradients	(GG) Global	Gradients	(GG)

𝐿𝐺%% 𝐿𝐺!% … 𝐿𝐺!&% 𝐿𝐺%! 𝐿𝐺!! … 𝐿𝐺!&!

𝐺𝐺!!

𝐿𝐺!% … 𝐿𝐺!&%

𝐿𝐺!! … 𝐿𝐺!&!

𝐿𝐺!!& … 𝐿𝐺!&!&

… … …

…

𝐿𝐺%% … 𝐿𝐺!&%

𝐿𝐺%! … 𝐿𝐺!&!

𝐿𝐺%!& … 𝐿𝐺!&!&

… … …

𝐿𝐺%% 𝐿𝐺!% …

𝐿𝐺%! 𝐿𝐺!! …

𝐿𝐺%!&𝐿𝐺!!& …

… … …

𝐿𝐺!&%

𝐿𝐺!&!

𝐿𝐺!&!&𝐿𝐺!!&

𝐿𝐺!!
𝐿𝐺!%

… ……

𝐿𝐺%!

𝐿𝐺%!&

𝐿𝐺%%

…𝐺𝐺"" … 𝐺𝐺"#
"#

Global	Gradients	(GG)
𝐺𝐺% 𝐺𝐺! … 𝐺𝐺!&

Global	Gradients	(GG)
𝐺𝐺% 𝐺𝐺! … 𝐺𝐺!&

Update	Parameters:
𝑊": = 𝑊"-𝜂

'(
')!

Ba
ck
pr
op
ag
at
io
n

Fo
rw
ar
d	
pa
ss

𝐿𝐺$
%

𝜂

DNN parameters
in layer L

Cost/loss function

Layer L gradients
w.r.t to loss

Learning rate

jth chunk of local
gradients on node i

𝑊"

𝐶

𝜕𝑊"

𝐺𝐺$
% jth chunk of global

gradients on node i

𝜕𝐶

Terms:

…

…

…

Lo
ca
l	G
ra
di
en
ts
	fl
ow

…

…

Fig. 2: An overview of DNN distributed training on 16 nodes.

algorithm. The first step is a simple forward pass and is not quite
challenging. In the second step, however, the obtained gradients after
backpropagation are local to each node that must be accumulated,
because optimizing the model parameters requires all nodes to
synchronize their gradients uniformly.

Figure 2 illustrates an example of a DNN distributed training using
16 nodes. Using the same model replica (W1, ...,WL), each node
takes charge of processing one data chunk and producing one gradient
chunk (i.e., LGi

j) during the forward and backward pass, respectively.
Consequently, all nodes must communicate to send/receive their
gradient chunks. Since the gradient tensor has a large volume,
especially in large-scale DNNs, each node sends/receives a slice of
the gradient tensor at a time for the gradients to be combined (e.g.,
averaged). The local gradients on each node are sliced into 16 parts.
For synchronization, each node is responsible for combining one of
the 16 slices based on its index, meaning node i is in charge of
combining the ith gradient chunk, resulting in a global gradient for
that slice (GGi). Next, the nodes must communicate one more time to
share the final global gradients and update the model based on SGD.
This process occurs for every single iteration of training. Having the
global gradients as a whole, the model can update its parameters
using SGD and be ready to go through the next training iteration.
The challenge is that the training time is bounded by the extensive
communication caused by gradient synchronization [21].

C. Collective Communication Algorithms

In distributed training, the calculated gradients must be synchro-
nized among computing nodes before each weight update step. Two
common approaches are considered to synchronize the gradients,
namely centralized and decentralized [22]. In the centralized ap-
proach, all the gradients will be accumulated at a given node, posing
high bandwidth requirements to the endpoint. In contrast, the de-
centralized approach performs gradient exchange among computing
nodes via all-reduce operations [23] shown in Figure 2. The all-reduce
operation performs reductions (e.g., sum, max or average) on the local
gradients across nodes.

(b) Reduce-Scatter(a) Initial data on each node (c) All-Gather

Node	0 Node	1 Node	2 Node	13 Node	14 Node	15…

𝐿𝐺!"

𝐿𝐺#!

𝐿𝐺#$!

𝐿𝐺#%!

𝐿𝐺!#

𝐿𝐺#"

𝐿𝐺#$#

𝐿𝐺#%#

𝐿𝐺!&

𝐿𝐺#&

𝐿𝐺#$&

𝐿𝐺#%&

𝐿𝐺!#'

𝐿𝐺##'

𝐿𝐺#$#'

𝐿𝐺#%#'

𝐿𝐺!#$

𝐿𝐺##$

𝐿𝐺#$"

𝐿𝐺#%#$

𝐿𝐺!#%

𝐿𝐺##%

𝐿𝐺#$#%

𝐿𝐺#%"

… … … … … …

Node	0 Node	1 Node	2 Node	13 Node	14 Node	15…

𝐿𝐺!!

𝐿𝐺#!

𝐿𝐺#$!

𝐿𝐺#%!

𝐿𝐺!#

𝐿𝐺##

𝐿𝐺#$#

𝐿𝐺#%#

𝐿𝐺!&

𝐿𝐺#&

𝐿𝐺#$&

𝐿𝐺#%&

𝐿𝐺!#'

𝐿𝐺##'

𝐿𝐺#$#'

𝐿𝐺#%#'

𝐿𝐺!#$

𝐿𝐺##$

𝐿𝐺#$#$

𝐿𝐺#%#$

𝐿𝐺!#%

𝐿𝐺##%

𝐿𝐺#$#%

𝐿𝐺#%#%

… … … … … …

Node	0 Node	1 Node	2 Node	13 Node	14 Node	15…

… … … … … …

!
!

!
!

!
!

!
!

𝐺𝐺!!

𝐺𝐺#!

𝐺𝐺#$!

𝐺𝐺#%!

𝐺𝐺!#

𝐺𝐺##

𝐺𝐺#$#

𝐺𝐺#%#

𝐺𝐺!&

𝐺𝐺#&

𝐺𝐺#$&

𝐺𝐺#%&

𝐺𝐺!#'

𝐺𝐺##'

𝐺𝐺#$#'

𝐺𝐺#%#'

𝐺𝐺!#$

𝐺𝐺##$

𝐺𝐺#$#$

𝐺𝐺#%#$

𝐺𝐺!#%

𝐺𝐺##%

𝐺𝐺#$#%

𝐺𝐺#%#%

Fig. 3: Ring-based all-reduce (reduce-scatter and all-gather) operations: (a) data distribution (input, weight, and gradient) in an accelerator
with 16 nodes, (b) Ring-based reduce-scatter operation to accumulate gradient, and (c) Ring-based all-gather operation to update weight.

TABLE I: Bandwidth and Latency Analysis of All-reduce Algorithms
in Torus

All-reduce Max # of Links Bandwidth/Link Synchronization Latency Max Bandwidth

Ring N G/N N − 1 G

2D Ring 2N G/N 2(
√
N − 1) 2G

Binary Tree 2 ∗ (N − 1) G/2
√
N − 1 ≈ 2G

Multi-Tree 4 ∗ (N − 1) G/4
√
N − 1 ≈ 4G

ARIES 8(
√
N − 1) ∗

√
N G/N min(log4 N/4, L× (L

√
N − 1)) 4G

Among many all-reduce algorithms, the ring all-reduce algorithm
has been integrated into commercial collective libraries [24], [25].
In this algorithm, the all-reduce operation consists of two steps,
reduce-scatter and all-gather, which corresponds to the combine and
gather phase of Figure 2, respectively. Figure 3 illustrates the stepwise
process to perform all-reduce in a 16-node distributed system.

We take node 0 as an example to illustrate the reduce-scatter
operation (the first row in Figure 3(b)). At time step 1, node 1 will
send its gradient (LG1

0) to node 2. In the next step, node 2 will receive
the gradient (LG1

0) from node 1 and adds it to LG2
0. Following this

principle, the gradient LGi
0 will be accumulated with all the gradients

stored at intermediate nodes all the way to the end node 0. Similarly,
each node has a part of the accumulated gradients (

∑
i LG

i
0) by

time step 16. Upon the completion of the reduce-scatter, an all-gather
operation as shown in Figure 3(c), is performed. Each node will later
broadcast the accumulated gradients (GGi =

∑
i LG

i
0) to the rest of

the nodes hop by hop. Finally, all the accumulated gradients will be
received at each node.

D. Motivation

Current all-reduce algorithms are built upon ring and tree struc-
tures, providing either linear or logarithmic scaling in network
bandwidth and synchronization latency. Theoretically, these algo-
rithms [18], [26], [27] leverage topological characteristics, such as
high dimensionality, to improve their performance in synchronization
latency and bandwidth. In the meantime, this necessitates high-
dimensional topologies, such as hypercube, to meet the bandwidth
and latency requirements. Given the power and area constraints
in chiplet-based systems, the performance of existing all-reduce
algorithms could be bounded by the limited and rigid network
connectivity. As shown in Table I, we formulate the bandwidth and
latency performance of various all-reduce in a

√
N ×

√
N torus

network. For example, even though ring all-reduce can reduce the
link bandwidth requirement to G/N , in which G is the gradient
size for the entire model. However, the synchronization latency is
bounded by the ring diameter (N − 1), as the gradients need to
be accumulated across the network. To resolve this problem, the
ring diameter can be reduced radically (2

√
N − 1) by having high-

dimensional rings such as 2D ring, but the increased dimensionality

Silicon Interposer

(b)(a)

ARIES Network

Chiplet Routers

Chiplet

PE R

R

R

R

R R

RR

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE
R R RR

R R R R

Global
Buffer

ARIES
Router

Fig. 4: ARIES architecture in (a) package-level, and (b) chiplet-level.

requires doubled link count. On the other hand, we assume K as
the tree number and D as the degree for each node. The tree-based
all-reduce can enable logarithmic scaling in synchronization latency,
but it has a relatively high bandwidth requirement per link. The
bandwidth per link is proportional to the tree count (i.e. K), and,
similarly, the reduced requirement comes with overheads in link count
(K∗(N−1)). Eventually, the performance of all-reduce algorithms on
chips could be bounded by the effective utilization of wiring resources
(4N in torus) and network diameter (

√
N−1). With the limited area

and wiring budget, it requires an efficient algorithm and hardware
co-design to better utilize network resources facilitating all-reduce
collectives. Our proposed design, ARIES, aims to provide alternative
latency reduction and obtain maximum bandwidth utilization in
chiplet-based architectures while retaining similar area and wire
costs as compared to the torus. Please note that L is the depth of
hierarchical topologies.

III. PROPOSED ARIES DESIGN

The primary goal of ARIES is to facilitate prevalent collective
communications that arise in distributed training. In particular, ARIES
consists of two salient designs: a flexible interconnect design and
improved all-reduce algorithms. The flexible interconnect can in-
crease link count and rematch the router port and link, which can
effectively increase network utilization with ultra-low overheads.
The proposed all-reduce algorithms pursue alternative topological
characteristics and flexibility to sustain the performance scaling of
collective communications. The proposed hardware and algorithm
co-design can remedy the compromised performance caused by the
misalignment between network topology and all-reduce algorithms.

A. ARIES Micro-architecture

Figure 4 shows ARIES architecture at two levels - package and
chiplet. At the package level, as shown in Figure 4(a), ARIES consists
of an array of N×N chiplets interconnected by a flexible interconnect,
which we call ARIES NoC in this paper. Each chiplet has an array
of M×M TPU-like PEs and a global buffer connected by a mesh
interconnect, as shown in Figure 4(b). For simplicity, we use a 4×4
ARIES architecture to illustrate the concept.

(b)(a)

Switch
Control

Routing
Table

Link
Control

Crossbar

Chiplet

Network Interface

RC SA VA

Route
Comp.

Switch
Alloc.

VC
Alloc.

Link Switch

Link Switch +Bypass Link X +X

+Bypass Y
+Bypass X

-X

-Bypass Y
-Bypass X

+Y

+Bypass Y
+Bypass X

-Y

-Bypass Y
-Bypass X

+Bypass Link Y

+X

+Bypass Y
+Bypass X

-X

-Bypass Y
-Bypass X

+Y

+Bypass Y
+Bypass X

-Y

-Bypass Y
-Bypass X

Lo
ca

l

Local

Fig. 5: ARIES architecture in (a) a 4×4 ARIES package-level NoC
architecture, and (b) proposed ARIES router architecture.

B. ARIES NoC Architecture

Unlike off-chip networks, high-dimensional topologies are hardly
being deployed on chips to address the performance bottlenecks of
collective communications due to the limited and rigid metal layers.
As such, improving network utilization and flexibility could be an
alternative solution to sustain performance scaling concerns. Even
though prior work [28]–[31] has studied flexible interconnect designs,
they mainly focused on altering the inter-router connectivity, thereby
reducing long-haul communication and increasing bi-section band-
width. In all-reduce operations, resource underutilization is mostly
caused by insufficient intra-router connectivity. Moreover, the link
resources, regardless of their length and connectivity, are not enough
to support hop-by-hop gradient accumulations. Unfortunately, those
issues are not well addressed in the existing literature.

For example, mapping a binary-tree all-reduce algorithm [14] to a√
N×

√
N grid-like topology could lead to resource under-utilization.

The binary tree all-reduce algorithm requires 2(N − 1) connections
between nodes, whereas the torus topology can provide 4N links.
This indicates that a significant amount of wires and routers are
underutilized, not to mention ring-based algorithms (with fewer link
requirements). On the other hand, K-tree all-reduce requires K ×N
edges, which overwhelms the overall wire budget when K is larger
than four.

To this end, the proposed ARIES NoC design adds an additional
degree of flexibility to conventional router architecture, enabling
improved resource utilization for all-reduce algorithms. Additionally,
we proposed a low-cost reconfigurable link that can be sized to a
bundle of short wires increasing total link resources. For simplicity,
we utilize a 4×4 ARIES NoC to illustrate the key idea. As shown in
Figure 5, ARIES NoC adopts a passive interposer design, where only
wires are deployed in the silicon interposer. The router, including its
control logic, is implemented on the chiplet. ARIES NoC is built
on top of a mesh topology, where two bi-directional bypassing links
are placed across each row and column. ARIES NoC can adapt to
various network topologies supporting any tree and ring-based all-
reduce algorithms.

1) ARIES Router: As mentioned, a large number of router ports
and links are underutilized in ring and tree all-reduce algorithms. The
root cause is the restricted connectivity between the router port and
network link, as each router port is only connected to a given link in
conventional NoC design. To resolve this issue, we can either connect
one port with multiple links to relax this constraint or enable link
selection at each port with multiple possible connections. In addition,
to address the bandwidth issue caused by the micro-bump pitch size,

we still follow a virtual channel design in the router, which avoids
head-of-line blocking and increases throughput.

ARIES Router is similar to the conventional mesh-based router
with five input ports, +x, -x, +y, -y, and local. In addition to the
conventional router, a set of muxes are added into +x, -x, +y, and
-y directions, and each mux connects to a mesh link, and two uni-
directional bypassing links are placed at x and y direction. For
example, the input port +x is connected to +x, +bypassing x, and
+bypassing y. This allows the input port +x can be utilized for
receiving packets from three links +x, +bypassing x, and +bypassing
y. Please note that the router radix does not increase, and only
one link can be connected to one port at a time. At the virtual
channel of each input port, a link is implemented to support circuit
switching, where all the data can be directly injected into the local
port without buffering at the router. The routing table records the ring
and tree connectivity, and it records the upstream and downstream
router information. The routing information can be configured when
the specific all-reduce algorithm is determined. We use round-robin
arbitration to ensure the fairness of packets.

2) ARIES Link: A variety of links have been discussed in [26], and
the key design philosophy is to bridge long-distance communication.
However, those long-haul links, like wrap-up links in the torus, are
underutilized in the ring all-reduce algorithm, as its communication
only happens between adjacent nodes. On the other hand, the tree
topology desires long-distance communication to avoid contention,
thereby maximizing its advantages in latency reduction. It is costly to
accommodate both requirements when considering the limited wiring
budget. To address this issue, we propose the ARIES link, and its idea
is very similar to an adaptable link design but with a much lower
cost. As shown in Figure 5, a simple transistor is implemented in
each bypassing link. The transistor acts like a switch to turn on/off
the wire connection with its associated router. This allows the desired
sizing of links.

IV. ALL-REDUCE ALGORITHMS IN ARIES

Collective communication primitives have been proposed to
speed up parameter synchronization in distributed learning, such
as NVIDIA’s Collective Communications Library (NCCL), Uber’s
Horovod, and Baidu’s Ring all-reduce. Despite the aforementioned,
the direct application of all-reduce algorithms in on-chip networks
remains unexplored, requiring a careful study of various all-reduce
algorithms. In this section, we argue that the algorithm and com-
munication fabrics should be synergized toward parallel distributed
training.

A. Ring-based All-reduce Optimization

The ring all-reduce algorithm and its variants have been widely
implemented to support distributed learning in existing commercial
libraries. The advantage of ring-based algorithms is the bandwidth,
where gradients are partitioned and accumulated in a distributed
manner. This requires each set of gradients to traverse the entire
network to complete the Reduce operation, as shown in Figure 6.
For example, a chunk of the gradients is calculated at node 1, which
will be accumulated with the gradients stored in other nodes later. As
such, the latency of completing the ring-based Allreduce operation is
limited by the topology diameter. In addition, mapping a ring-based
algorithm in a grid-like topology is likely to result in a resource
under-utilization issue, where a large set of links and router ports
are not fully utilized, as shown in Figure 6(a). The key idea of
ARIES design is to utilize idle network resources to improve the
performance of ring-based all-reduce algorithms. The idle resources

(a) (b) (c)
Interconnect Links Reduce-Scatter Path

0 1 2 3

4 5 6 7

8 9 10 11

12 13 1514

Unutilized wrap-up links Increasing bandwidth using short links

Idle Links Bypassing Links

0 1 2 3

4 5 6 7

8 9 10 11

12 13 1514

0 1 2 3

4 5 6 7

8 9 10 11

12 13 1514

Time step 1
Reduce-Scatter hierarchical Reduction

0 1 2 3

4 5 6 7

8 9 10 11

12 13 1514

Time step 2

Node	2

Node	3

Node	7

Node	6

𝐿𝐺!" 𝐿𝐺#" 𝐿𝐺""

𝐿𝐺!" + 𝐿𝐺!$ 𝐿𝐺#$ 𝐿𝐺"$ 𝐿𝐺$$

𝐿𝐺!% 𝐿𝐺"% 𝐿𝐺$"

𝐿𝐺!& 𝐿𝐺#& 𝐿𝐺$&

𝐿𝐺#% + 𝐿𝐺#$

𝐿𝐺"& + 𝐿𝐺"%

𝐿𝐺$" + 𝐿𝐺$&

… … … …

Node	i 𝐿𝐺!'

Nodes in a group after Local Gradients reduction:

!
!

𝐿𝐺#'!
!

𝐿𝐺"'!
!

𝐿𝐺$'!
!

Fig. 6: Optimized Ring-based all-reduce in ARIES: (a) mapping of ring all-reduce in a 4×4 torus, (b) bandwidth optimized ring all-reduce
in a 4×4 ARIES, and (c) latency optimized ring all-reduce in a 4×4 ARIES.

(a)
Tree A Reduce-Scatter Tree B Reduce-Scatter

15

0

1

3

5

7

9

11

13

15

4

12

2

6

10

14

0

2

4

6

8

10

12

14

3

11

1

5

9

13

15

8 7

Tree A Tree B

(b)

Contention during reduction

Tree A reduction flow Tree B reduction flow

0 1 2 3

4 5 6 7

8 9 10 11

12 13 1514

(d)

0
1 2 3 4 5 6 7

8
911 1014 13

15
12

Segmenting 0-8 node pair link into shorter links

Node pairs competing for bypassing links

Segmented Links

Relaxing contention using bypassing links

Bypassing Links

0 1 2 3

4 5 6 7

8 9 10 11

12 13 1514

(c)

0
1 2 3 4 5 6 7

8
911 1014 13

15
12

Fig. 7: Optimized Double Binary Tree in ARIES: (a) double binary tree all-reduce algorithm (Tree A and Tree B), (b) traffic contention of
double binary tree in a 4×4 Torus, (c) mapping of double binary tree in a 4×4 ARIES, and (d) tree scalability issue.

could be utilized to either reduce the network diameter or double the
network bandwidth. However, this requires adequate modifications in
the network and algorithm. We illustrate two approaches to optimize
the bandwidth and latency performance of ring-based all-reduce
algorithms.

1) Bandwidth Optimized Ring All-reduce in ARIES: Bandwidth
optimization utilizes idle network resources to double the bandwidth
between adjacent routers. The essence of this technique is to increase
the number of links that could possibly connect adjacent routers, and
thus 2N links are used. In ARIES, the long-haul bypassing links
should be segmented into a number of short links, thus providing
additional connections between adjacent routers. However, the input
ports have been occupied by the mesh links. For example, as shown
in Figure 6(b), for routers 9 and 10, the segmented bypassing links at
x direction (green color) are unable to be connected to the input ports
that have been used by mesh links (blue color). In such a case, those
segmented bypassing links can be connected to idle router ports in
the y direction. Since the bandwidth optimization only requires the
change at the NoC connectivity, the ring all-reduce algorithm remains
the same communication pattern.

2) Latency Optimized Ring Topology in ARIES: As mentioned,
the network diameter determines the latency to complete the gradient
update in the ring all-reduce algorithm. Given the fact that gradients
have to be accumulated node by node, conventional bypassing tech-
niques are no longer useful. Based on this observation, we propose
a hierarchical ring-based all-reduce that can minimize the latency of
gradient synchronization. The key idea is that multiple ring all-reduce
operations are performed simultaneously to reduce the number of
hops required to complete the synchronization, thereby multiple rings
will be formed in support of the all-reduce operations at the same

time. Partially accumulated gradients will be further accumulated as
a ring. The hierarchical design can effectively reduce the latency.

In conventional grid-like topology, the ring all-reduce takes 16
steps to complete the reduce-scatter. In the proposed hierarchical ring
topology, all nodes within each quadrant (denoted as four different
colors) will perform reduce-scatter operations in parallel. As shown
in Figure 6(c), the gradients will be accumulated from node 3 to node
2 in a clockwise direction at the upper right quadrant. As such, the
gradients at four quadrants will be accumulated at nodes 1, 2, 13,
and 14.

Following that, the accumulated gradients from the four quadrants
will perform a clockwise or anti-clockwise accumulation. Conse-
quently, the latency of completing the reduce-scatter operation is
reduced by half as compared to the traditional ring all-reduce at the
cost of a higher bandwidth requirement.

This methodology can be generalized to a
√
N ×

√
N network,

in which a L-level hierarchical ring all-reduce is configured. As
such, the gradient accumulation will be performed hierarchically. The
overall latency can be reduced to L × (L

√
N − 1). In such a case,

multiple L
√
N× L

√
N rings will be formed to perform partial gradient

accumulations in parallel.

B. Tree-based Collective Optimization

Even though tree-based all-reduce algorithms can significantly
reduce the latency due to the logarithmic reduction of tree height,
the deployment of such algorithms to on-chip networks faces two
major issues. First, given the grid-like topology, the physical distance
between tree nodes varies, leading to traffic contention. Second, wire
resources and micro-bump pitch are not sufficient enough to support
all the link connections between tree nodes.

(b)

Fully connected

Time step 1

0 1

4 5

2 3

6 7

10 11

14 15

8 9

12 13

Time step 2

0 1

4 5

2 3

6 7

10 11

14 15

8 9

12 13

(a)

0

13412

8 1513 7 5 2

9 11 14 6

10

1 4 5

0

12

8 9 13

3

2 6 7

10 11 14

15

A single tree of the Multi-tree Optimized Multi-tree in ARIES

G
ra

di
en

t F
lo

w

G
ra

di
en

t F
lo

w

8 9

12 13

In the concentrated
scheme node 5 directly
sends to node 0 using

two short links

Bypassing Links

0 1

4 5

2 3

6 7

10 11

14 15

8 9

12 13

(c)
Interconnect LinksReduce-Scatter

𝐿𝐺!"# 𝐿𝐺!"" 𝐿𝐺!"$ 𝐿𝐺!
"%

𝐿𝐺!& 𝐿𝐺!' 𝐿𝐺!"(𝐿𝐺!")

𝐿𝐺!) 𝐿𝐺!
* 𝐿𝐺!+ 𝐿𝐺!(

𝐿𝐺!" 𝐿𝐺!$ 𝐿𝐺!% 𝐿𝐺!
#

!
!∈{$%,	$$,	$(,	$)}	

𝐿𝐺!,

!
!∈{+,	,,	$-,	$.}	

𝐿𝐺!
,

!
!∈{.,	/,	0,	-}	

𝐿𝐺!
,

!
!∈{$,	(,),	%}	

𝐿𝐺!,

Concentrated
node

Short bypassing links

Fig. 8: Optimized Multi-tree in ARIES: (a) Concentrated Multi-tree all-reduce in ARIES, (b) mapping of concentrated multi-tree in ARIES,
and (c) bandwidth optimization in multi-tree all-reduce.

For any tree-based algorithms [32]–[34], we assume K trees are
needed to perform all-reduce operations in a

√
N ×

√
N network.

Considering the limited network resources, there is a trade-off be-
tween the number of trees and the bandwidth requirement. Building
more trees can alleviate the bandwidth requirement for gradient
propagation. The latency of each tree is determined by the tree height
(logDN), in which the logarithm base (D), the number of children of
each node, is the critical factor. As such, the total number of edges
of K trees is K × N , and each edge demands an NoC link in an
ideal case. For a torus topology, the maximum number of links is
4N (bi-directional links are counted). It implies that NoC links may
not be enough to support each tree edge when K is larger than four,
regardless of wire length. Given this, we propose two optimization
techniques to manage the mentioned two scenarios. For simplicity, we
select the two most commonly seen tree-based all-reduce algorithms,
double binary tree and multi-tree, as case studies.

1) Binary Tree Optimization in ARIES: Double binary tree all-
reduce [32], [33] is another algorithm for collective operations
and is well supported in commercial libraries [25]. As shown in
Figure 7(a), two binary trees are constructed to complete the all-
reduce operations simultaneously. Theoretically, the double binary
tree has 2N edges, and it is within the wire budget. The primary
issue is the mismatch between the tree graph and the physical layout
- leading to long-distance communication and traffic contention, as
shown in Figure 7(b). For example, nodes 10 and 12 are adjacent
nodes in the tree graph but are not physically connected. The physical
distance between the tree nodes could increase when the network size
scales. This requires the application of long-haul links to bridge non-
adjacent nodes.

Figure 7(c) illustrates an example of configuring ARIES NoC to
build a dedicated connection for the double binary trees (Tree A and
B). Each link is allocated for a given route in the tree. For example,
nodes 1 and 3 in Tree B are connected via the bypassing link. As
such, the long-haul bypassing links can bridge non-adjacent nodes
in the network, reducing network latency and avoiding contention.
The hop count reduction for each tree layer could be generalized
as Equation 1, where h is the height level, and

√
N is the network

dimension size.

Hop Count Reductionh =

{√
N/2h − 1, 2h ≤

√
N

N/2h − 1, otherwise
(1)

Even though both binary trees (Tree A and B) are well-fitted into
ARIES NoC, the bypassing links are not enough for each row or
column when the network size is larger than 16×16. For example,

in Figure 7(d), two pairs of nodes (nodes 0-8 and 4-6) compete for
the bypassing links. In such a case, we divide the bypassing links
into multiple segments to satisfy the shorter bypassing links. For
a larger network size, we follow a greedy policy to segment the
bypassing links to connect any short-distanced nodes. The primary
reason behind this design is to simplify the routing algorithm to
prevent any channel dependencies.

2) Multi-tree Optimization in ARIES: In a distributed training
system consisting of n nodes based on the Multi-tree algorithm [34],
Figure 8(a) illustrates a single tree from the n constructed trees. Each
one of these trees is solely in charge of sending/receiving a slice of the
gradient tensor by index, such that the first constructed tree performs
the reduction of the first gradient chunk, i.e.,

∑
i LG

i
0, while the jth

tree is reducing the gradient chunk j, i.e.,
∑

i LG
i
j (note that i is

the node index). Once all the n trees complete the reduction for the
entire chunks of the gradients, each tree has the global gradient based
on its index (GGi). Finally, the all-gather operation is performed to
synchronize the global gradients.

Compared to the double binary tree algorithm, the multi-tree
algorithm [15] attempts to fully utilize all the network links by having
short-distance communications. However, even though the network
bandwidth is fully utilized, the bandwidth of multi-tree is bounded
by the link count, and its tree height still limits the synchronization
latency. In other words, the tree’s height is bounded by the diameter
of the physical topology layout. It performs even worse when the
traffic of multiple trees saturates a given node.

To tackle this problem, our key idea is to reduce the diameter of
the topology. Generally, two design choices can be used to reduce the
network diameter in the mesh-based topologies - adding extra links
(bypassing) or increasing router radix (concentration). We propose a
tree concentration approach to group a set of nodes as a concentrated
node as illustrated in Figure 8(a). The bypassing links can be
segmented into multiple short links, providing direct connections for
four nodes. As shown in Figure 8(b), in the blue concentrated node,
all the gradients (LG0

j , LG1
j , LG4

j , and LG5
j) will be accumulated

at a single node (
∑

i LG
i
j , where i ∈ {0, 1, 4, 5}). Once the data is

reduced or gathered, concentrated nodes will perform normal multi-
tree operations as shown in Figure 8(c). However, it could increase the
bandwidth requirement on the link, as the concentration reduces the
number of trees. To address this issue, we can partition the gradient
accumulation into two nodes within each concentrated tree node. As
such, we fully utilize all the links at each step while reducing the
tree height by half as shown in Figure 8(c). As a result, the latency
of the proposed optimization is approximately reduced to logDN/4,
and it attains a similar level of bandwidth as a multi-tree.

1 4 16 64 256 1024
Data Size (KB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Th

ro
ug

hp
ut

 (G
B/

s)
Mesh/Torus
Aries_BW
Aries_LT

(a) 4×4 Ring all-reduce

1 4 16 64 256 1024
Data Size (KB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Th
ro

ug
hp

ut
 (G

B/
s)

Mesh/Torus
Aries_BW
Aries_LT

(b) 8×8 Ring all-reduce

1 4 16 64 256 1024
Data Size (KB)

2

4

6

8

Th
ro

ug
hp

ut
 (G

B/
s)

Mesh
Torus
Aries_LT

(c) 4×4 DB-T all-reduce

1 4 16 64 256 1024
Data Size (KB)

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (G

B/
s)

Mesh/Torus
Aries_BW
Aries_LT

(d) 8×8 DB-T all-reduce

1 4 16 64 256 1024
Data Size (KB)

0

5

10

15

20

Th
ro

ug
hp

ut
 (G

B/
s)

Mesh
Torus
Aries_LT

(e) 4×4 MT all-reduce

1 4 16 64 256 1024
Data Size (KB)

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (G

B/
s)

Mesh
Torus
Aries_LT

(f) 8×8 MT all-reduce

Fig. 9: Throughput Analysis of ring and tree all-reduce Algorithms on different network topologies with various data size: (a) Ring all-
reduce in 4×4 Networks, (b) Ring all-reduce in 8×8 Networks, (c) Double Binary Tree all-reduce in 4×4 Networks, (d) Double Binary
Tree all-reduce in 8×8 Networks, (e) Multi-tree all-reduce in 4×4 Networks, and (f) Multi-tree all-reduce in 8×8 Networks.

TABLE II: System Configuration.
PE Configuration Accelerator ConfigurationParameters Parameters
Data Width 32 bits # of PEs 16
Buffer Size 64 KB Global Buffer 4 MB
Multiplier Array 32× 32 Clock Rate 1 GHz

C. Deadlock Avoidance

The network deadlock occurs due to improper NoC reconfigu-
ration, protocol deadlock, or circular channel dependence. In our
design, NoC is only configured prior to running the application,
which avoids any potential deadlocks caused by having distinct
routing algorithms. Furthermore, we follow the standard approach,
the deployment of virtual channels, to avoid protocol deadlocks.
Circular channel dependence is caused by the routing algorithms. In
this paper, the communication patterns of all the all-reduce algorithms
naturally prevent forming circular channel dependence. Consequently,
deadlock is intrinsically avoided in the proposed ARIES NoC design.

V. EVALUATION

For our evaluation, we extended the open-sourced ASTRA-SIM
simulator [9] to support a wide range of ring and tree-based col-
lective algorithms. The network performance is evaluated through
the GARNET simulator integrated with ASTRA-SIM. The detailed
simulation setup is included in Table II. To evaluate the area and
power consumption, we complete the synthesis for package, chiplet,
and PE, including the interconnect, MAC Array, buffers, and DRAM.
We use the Synopsys Design Compiler with the PDK 32nm library
for the synthesis and estimate the power using Synopsys PrimeTime
PX. Several DNN benchmarks are used to evaluate our proposed
design, including ResNet-50 [10], VGG-16 [11], DLRM [12] and
Transformer [13]. The baseline mesh router has two pipeline stages
(look-ahead routing and speculative optimizations), four virtual chan-
nels, and 32 buffers per VC. We assume the inter-chiplet hop latency
is 10 ns and the bandwidth is 68 GB/s.

A. Throughput Analysis for varying data sizes

As the proposed ARIES NoC design can adapt to various all-
reduce algorithms, we evaluate the throughput of ARIES design on
different network topologies with different data sizes (1 KB to 2
MB). Given the on-chip layout constraints, we mostly compare our
proposed design to on-chip topologies such as mesh and torus.

As shown in Figure 9(a) and (b), we compare two ARIES optimiza-
tions to target latency and bandwidth separately, which are denoted
as ARIES LT and ARIES BW in the ring all-reduce. We observed
that ARIES LT performs much better than other topologies, including
ARIES BW when the data size is small. As the data size increases,
the benefit of ARIES BW is more significant. When the network
size increases from 4×4 to 8×8, the throughput gain for ARIES BW

surpasses others with larger data sizes. It should be noted that the
message size decreases when the node number increases.

We also studied the throughput of ARIES in two tree-based all-
reduce algorithms, namely double binary tree (DB-T) and Multi-tree
(MT). From Figure 9(c) and (d), we can infer that ARIES has a
very similar throughput as compared to the mesh and the torus with
small data sizes (1-8 KB), but the throughput gain climbs with the
growth of data size. Similarly, when the network size increases to 64
nodes, the throughput of ARIES increases significantly regardless of
the data size. This is because ARIES reduces more hops by adding
bypassing links in a larger network. For the MT algorithm, as shown
in Figure 9(e) and (f), we observed a similar trend in throughput;
ARIES achieves high throughput improvements as compared to the
mesh and the torus in a 16-node system, whereas the throughput
increase is more significant in a larger network with 64 nodes. This
phenomenon is caused by the optimized MT in ARIES, which utilizes
the concept of concentration to reduce tree height, where the tree
height decreases more significantly in larger networks.

B. Performance Analysis

We further examine the performance (execution time) benefits of
having ARIES NoC design with real-world benchmarks. We compare
ARIES NoC with mesh, torus, Flattened Butterfly (FB) [35] and
Adapt-Noc [28] topologies. It should be noted that we designed a
pipeline to overlap the latency between communication and com-
putation for all designs, as it is a common approach to optimize
DNN training performance. For the ring all-reduce in Figure 10(a)
and (b), the performance in the mesh and the torus topologies is
almost identical, as it follows the same communication pattern. We
observed that ARIES could achieve 2.10× speedup in a 4×4 network
as compared to the mesh and the torus topologies, whereas it achieves
2.09× speedup in an 8×8 network. While FB and Adapt-Noc perform
better compared to mesh and torus topologies, as multiple nodes are
fully connected, which can reduce overall hops. ARIES still remains
the best choice and achieves 1.52× and 1.48× speedup in a 4×4
network, and it has 1.46× and 1.42× speedup in an 8×8 network
when compared to FB and Adapt-NoC, respectively. That is because,
with larger data size, ARIES has a better performance in utilizing
network resources for bandwidth optimization. For DB-T all-reduce
algorithms, the performance of the mesh and the torus topologies is
also similar, as the wrap-up links of the torus are not utilized for
optimizing DB-T algorithms.

As Figure 10(c) and (d) show that ARIES can achieve 1.35×,
1.35×, 1.65×, 1.17× speedup in a 4×4 network as compared to
mesh, torus, FB and Apadt-NoC topologies. Adapt-NoC performs
relatively better, as it can adapt itself to fit the DB-Tree structure to
some extent. FB performs worse in DB-Tree, as the multiple tree
nodes compete for the same channel due to the high radix. The
speedup of ARIES follows a similar trend in a larger network with 64

Resnet-50 VGG-16 DLRM Transformer0.0

0.5

1.0

1.5

2.0

2.5

No
rm

. S
pe

ed
 U

p

mesh Torus FB A-NoC Aries

Resnet-50 VGG-16 DLRM Transformer0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

. S
pe

ed
 U

p

(a) 4×4 Ring all-reduce

Resnet-50 VGG-16 DLRM Transformer0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

. S
pe

ed
 U

p

(b) 8×8 Ring all-reduce

Resnet-50 VGG-16 DLRM Transformer0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

. S
pe

ed
 U

p

(c) 4×4 DB-T all-reduce

Resnet-50 VGG-16 DLRM Transformer0.0

0.5

1.0

1.5

2.0

2.5

No
rm

. S
pe

ed
 U

p

(d) 8×8 DB-T all-reduce

Resnet-50 VGG-16 DLRM Transformer0.0

0.5

1.0

1.5

2.0

2.5

No
rm

. S
pe

ed
 U

p

(e) 4×4 MT all-reduce

Resnet-50 VGG-16 DLRM Transformer0.0

0.5

1.0

1.5

2.0

No
rm

. S
pe

ed
 U

p

(f) 8×8 MT all-reduce

Fig. 10: Performance Analysis of ring and tree all-reduce Algorithms on different network topologies with various DNN applications: (a)
Ring all-reduce in 4×4 Networks, (b) Ring all-reduce in 8×8 Networks, (c) Double Binary Tree all-reduce in 4×4 Networks, (d) Double
Binary Tree Allreduce in 8×8 Networks, (e) Multi-tree all-reduce in 4×4 Networks, and (f) Multi-tree all-reduce in 8×8 Networks.

Ring 4*4 Ring 8*8 DB-T 4*4 DB-T 8*8 MT 4*4 MT 8*8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

. E
ne

rg
y

Mesh Torus FB A-NoC Aries

Ring 4*4 Ring 8*8 DB-T 4*4 DB-T 8*8 MT 4*4 MT 8*80.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

. E
ne

rg
y

(a) ResNet-50

Ring 4*4 Ring 8*8 DB-T 4*4 DB-T 8*8 MT 4*4 MT 8*80.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

No
rm

. E
ne

rg
y

(b) VGG-16

Ring 4*4 Ring 8*8 DB-T 4*4 DB-T 8*8 MT 4*4 MT 8*80.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

. E
ne

rg
y

(c) DLRM

Ring 4*4 Ring 8*8 DB-T 4*4 DB-T 8*8 MT 4*4 MT 8*80.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

. E
ne

rg
y

(d) Transformer

Fig. 11: Energy Analysis of ring and tree all-reduce Algorithms on different network topologies with various DNN applications.

nodes, where its speedup increases up to 2.80×, 2.43×, 3.92× and
1.67× compared to other topologies, respectively. For MT all-reduce
in Figure 10(e) and (f), ARIES can achieve 2.55×, 1.44×, 1.03× and
1.25× speedup in a 4×4 network as compared to mesh, torus, FB and
Adapt-NoC topologies, and 2.21×, 1.28×, 1.08× and 1.23× speedup
in an 8×8 network, respectively. FB performs better on MT, as it has
a higher network radix, which helps to reduce MT’s height. However,
the rigid connectivity of FB still cannot outperform ARIES. Please
note that in transformers training the overall speedup in execution
time is relatively small. This is because the computation time for the
transformers dominates the total execution time, and thus the overall
speedup is not significant even though the communication time is
reduced by 33.7% for ring all-reduce, 51.9% for DB-T all-reduce
and 19.5% for MT Allreduce on average across different networks.

C. Energy Analysis

In this section, we evaluate the energy benefits of having ARIES
with various DNN architectures. As shown in Figure 11, ARIES
achieves 30.5% and 38.8% energy reduction on average in a 4×4
and an 8×8 mesh network with different DNN architectures and
all-reduce algorithms, respectively. When compared to the torus,
ARIES achieves 28.9% and 33.8% reduction on average in a 4×4
network and an 8×8 network. As compared to FB, the average
energy reduction is 21.2% and 29.2% in a 4×4 network and an 8×8
network. The average energy reduction indicates a 17.5% and 20.7%
improvement in a 4×4 network and an 8×8 network when compared
to Adapt-NoC. Thanks to the adaptive bypassing links, the energy
reduction stems from the total execution time and the overall hop
counts being reduced. MT all-reduce benefits the most, as it achieves
the highest speedup and most hops reduction when compared to other
algorithms.

D. Area Overhead

We evaluate the area overhead through Synopsis Design Vision
using 45 nm and 65 nm technologies for the chiplet and the interposer,
respectively. The baseline chiplet router consists of a crossbar, a
switch allocator, a virtual channel allocator, and buffers of size 17806
um2, 4589 um2, 9066 um2, 98740 um2, respectively. As a result,

the overall chiplet NoCs account for 8.3 mm2 area. The ARIES
requires 0.3 mm2 additional area on the chiplet as compared to the
mesh topology.

VI. RELATED WORK

Applications have been observed to exhibit varying behaviors and
characteristics over time [36]–[38], necessitating an adaptable on-
chip interconnect to meet their distinctive communication demands.
To this end, Runtime reconfiguration has been proposed to improve
NoC performance, reliability, and energy savings. SMART [31] and
express virtual channel [39] are two techniques that allow packets
to bypass the intermediate routers to reduce communication latency
dynamically. However, such designs can benefit general-purpose
processors with sporadic long-distance communications which fail to
well support all the all-reduce collectives. In [40], a reconfigurable
link design can dynamically allocate channel bandwidth between
adjacent routers, but all-reduce collectives have high bandwidth de-
mands in both link directions. In [41], a reconfigurable NoC changes
NoC topology to detour traffic away from the power-gated routers, but
the intra-router connectivity is still restricted. SIGMA [42] exploits
the flexible interconnect designs at the PE level to tackle diverse
dataflows as well as sparse and irregular DNN computations. Such a
reconfigurable design focuses on inter-router connections, in which
intra-router flexibility remains unexplored.

VII. CONCLUSION

In this paper, we propose ARIES, an algorithm and architecture
co-design in chiplet-based systems that can efficiently support various
collective communications in parallel DNN training. Specifically,
we propose a flexible NoC design that adapts to various collective
communication patterns - ring and tree all-reduce. The proposed NoC
design is also capable of adapting to various network topologies,
such as hierarchical rings and trees. Moreover, we leverage the NoC
flexibility to facilitate existing ring and tree-based all-reduce opera-
tions with the aim of improving performance and energy efficiency.
Simulation results show that the proposed ARIES can achieve up to
3.92× speedup in execution time and 38.8% reduction in Network-
on-Chip (NoC) energy consumption when compared to prior work.

REFERENCES

[1] J. Devlin, M. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In arXiv
preprint arXiv:1810.04805, 2019.

[2] M. Chen, A. Radford, J. Wu, H. Jun, P. Dhariwal, D. Luan, and
I. Sutskever. Generative pretraining from pixels. In In Proceedings
of International Conference on Machine Learning (ICML), pages 1691–
1703. ACM, 2020.

[3] D. Elbrächter, P. Grohs, A. Jentzen, and C. Schwab. Dnn expression
rate analysis of high-dimensional pdes: Application to option pricing.
In Constructive Approximation, pages 3–71, 2018.

[4] Z. Hu, Y. Zhao, and M. Khushi. A survey of forex and stock price
prediction using deep learning. In Applied System Innovation, 2021.

[5] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng. Large scale
distributed deep networks. In In Proceedings of Neural Information
Processing Systems (NeurIPS), pages 1223–1231. ACM, 2012.

[6] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity. In The
Journal of Machine Learning Research, pages 5232–5270, 2022.

[7] Y. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. Tell, Y. Zhang,
W. Dally, J. Emer, C. Gray, B. Khailany, and S. Keckler. Simba: Scaling
deep-learning inference with multi-chip-module-based architecture. In
Proceedings of IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 14–27. IEEE, 2019.

[8] Y. Li, A. Louri, and A. Karanth. Spacx: Silicon photonics-based
scalable chiplet accelerator for dnn inference. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 831–845. IEEE, 2022.

[9] S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna. Astra-sim:
Enabling sw/hw co-design exploration for distributed dl training plat-
forms. In Proceedings of IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 81–92. IEEE, 2020.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778. IEEE, 2015.

[11] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In arXiv preprint arXiv:1409.1556, 2015.

[12] M. Naumov, D. Mudigere, H. Shi, J. Huang, N. Sundaraman, J. Park,
X. Wang, U. Gupta, C. Wu, A. Azzolini, et al. Deep learning recom-
mendation model for personalization and recommendation systems. In
arXiv preprint arXiv:1906.00091, 2019.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Proceedings
of International Conference on Neural Information Processing Systems
(NeurIPS), pages 6000–6010. ACM, 2017.

[14] P. Sanders, J. Speck, and J. Träff. Two-tree algorithms for full bandwidth
broadcast, reduction and scan. In Parallel Comput., pages 581–594,
2009.

[15] J. Huang, P. Majumder, S. Kim, A. Muzahid, K. Yum, and E. Kim.
Communication algorithm-architecture co-design for distributed deep
learning. In Proceedings of ACM/IEEE International Symposium on
Computer Architecture (ISCA), pages 181–194. IEEE, 2021.

[16] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony. 2.2 amd
chiplet architecture for high-performance server and desktop products.
In Proceedings of IEEE International Solid- State Circuits Conference
(ISSCC), pages 44–45. IEEE, 2020.

[17] T. Li, J. Hou, J. Yan, R. Liu, H. Yang, and Z. Sun. Chiplet heterogeneous
integration technology—status and challenges. In Electronics, 2020.

[18] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A. Schwing,
H. Esmaeilzadeh, and N. Kim. A network-centric hardware/algorithm
co-design to accelerate distributed training of deep neural networks. In
Proceedings of IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 175–188. IEEE, 2018.

[19] Y. Bai, C. Li, Q. Zhou, J. Yi, P. Gong, F. Yan, R. Chen, and Y. Xu.
Gradient compression supercharged high-performance data parallel dnn
training. In Proceedings of ACM Symposium on Operating Systems
Principles (SIGOPS), pages 359–375. ACM, 2021.

[20] M. Zinkevich, M. Weimer, L. Li, and A. Smola. Parallelized stochastic
gradient descent. In Proceedings of International Conference on Neural
Information Processing Systems (NeurIPS), pages 2595–2603. ACM,
2010.

[21] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng. Image classification
at supercomputer scale. In arXiv preprint arXiv:1811.06992, 2018.

[22] T. Ben-Nun and T. Hoefler. Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis. In ACM Computing Surveys
(CSUR), pages 1–43, 2019.

[23] P. Patarasuk and X. Yuan. Bandwidth optimal all-reduce algorithms
for clusters of workstations. In Journal of Parallel and Distributed
Computing, pages 117–124, 2009.

[24] U. von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. https://github.com/baidu-research/baidu-allreduce, 2017.
[Online; accessed February 2, 2023].

[25] NVIDIA. Nvidia collective communications library (NCCL). https:
//developer.nvidia.com/nccl, 2016. [Online; accessed February 2, 2023].

[26] G. Wang, S. Venkataraman, A. Phanishayee, N. Devanur, J. Thelin, and
I. Stoica. Blink: Fast and generic collectives for distributed ml. In
Proceedings of Machine Learning and Systems (MLSys), pages 172–
186. mlsys.org, 2020.

[27] B. Klenk, N. Jiang, G. Thorson, and L. Dennison. An in-network
architecture for accelerating shared-memory multiprocessor collectives.
In Proceedings of ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), pages 996–1009. IEEE, 2020.

[28] H. Zheng, K. Wang, and A. Louri. Adapt-noc: A flexible network-on-
chip design for heterogeneous manycore architectures. In Proceedings
of IEEE International Symposium on High-Performance Computer Ar-
chitecture (HPCA), pages 723–735. IEEE, 2021.

[29] H. Zheng, K. Wang, and A. Louri. A versatile and flexible chiplet-based
system design for heterogeneous manycore architectures. In Proceedings
of ACM/IEEE Design Automation Conference (DAC). IEEE, 2020.

[30] H. Zheng and A. Louri. Agile: A learning-enabled power and
performance-efficient network-on-chip design. IEEE Transactions on
Emerging Topics in Computing, 10(1):223–236, 2020.

[31] O. Chen, S. Park, T. Krishna, S. Subramanian, A. Chandrakasan, and
L. Peh. Smart: a single-cycle reconfigurable noc for soc applications.
In Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 338–343. IEEE, 2013.

[32] P. Sanders, J. Speck, and J. Träff. Two-tree algorithms for full bandwidth
broadcast, reduction and scan. In Parallel Computing, pages 581–594,
2009.

[33] S. Jeaugey. Massively scale your deep learning training with nccl 2.4.
In NVIDIA Developer Blog, 2019.

[34] J. Huang, P. Majumder, S. Kim, A. Muzahid, K. Yum, and E. Kim.
Communication algorithm-architecture co-design for distributed deep
learning. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), pages 181–194. IEEE, 2021.

[35] J. Kim, J. Balfour, and W. Dally. Flattened butterfly topology for on-
chip networks. In Proceedings of IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 172–182. IEEE, 2007.

[36] A. Mirhosseini, M. Sadrosadati, B. Soltani, H. Sarbazi-Azad, and
T. Wenisch. Binochs: Bimodal network-on-chip for cpu-gpu heteroge-
neous systems. In Proceedings of IEEE/ACM International Symposium
on Networks-on-Chip (NOCS), pages 1–8. IEEE, 2017.

[37] Y. Yao and Z. Lu. iNPG: Accelerating critical section access with in-
network packet generation for noc based many-cores. In Proceedings of
IEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA), pages 15–26. IEEE, 2018.

[38] J. Yang, H. Zheng, and A. Louri. Venus: A versatile deep neural network
accelerator architecture design for multiple applications. In proceedings
of ACM/IEEE Design Automation Conference (DAC). IEEE, 2023.

[39] A. Kumar, L. Peh, P. Kundu, and N. Jha. Express virtual channels:
towards the ideal interconnection fabric. In Proceedings of ACM/IEEE
International Symposium on Computer Architecture (ISCA), pages 150–
161. IEEE, 2007.

[40] M. Faruque, T. Ebi, and J. Henkel. Configurable links for runtime adap-
tive on-chip communication. In Proceedings of the Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 256–261.
IEEE, 2009.

[41] R. Parikh, R. Das, and V. Bertacco. Power-aware nocs through routing
and topology reconfiguration. In Proceedings of ACM/IEEE Design
Automation Conference (DCA), pages 1–6. IEEE, 2014.

[42] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna. Sigma: A sparse and irregular gemm accelerator
with flexible interconnects for dnn training. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 58–70. IEEE, 2020.

https://github.com/baidu-research/baidu-allreduce
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl

	Introduction
	Background and Motivation
	Chiplet-based Architectures
	Distributed Deep Neural Network Training
	Collective Communication Algorithms
	Motivation

	Proposed ARIES Design
	ARIES Micro-architecture
	ARIES NoC Architecture
	ARIES Router
	ARIES Link

	All-reduce Algorithms in ARIES
	Ring-based All-reduce Optimization
	Bandwidth Optimized Ring All-reduce in ARIES
	Latency Optimized Ring Topology in ARIES

	Tree-based Collective Optimization
	Binary Tree Optimization in ARIES
	Multi-tree Optimization in ARIES

	Deadlock Avoidance

	Evaluation
	Throughput Analysis for varying data sizes
	Performance Analysis
	Energy Analysis
	Area Overhead

	Related Work
	Conclusion
	References

