
SAGA: Sparsity-Agnostic Graph Convolutional Network
Acceleration with Near-optimal Workload Balance

Sanjay Gandham*, Lingxiang Yin*, Hao Zheng, Mingjie Lin
Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA

{sanjay.gandham, lingxiang.yin, hao.zheng, milin}@ucf.edu

Abstract—Graph Convolutional Networks (GCNs) have shown much
promise in resolving sophisticated scientific problems with non-Euclidean
data, such as traffic prediction, disease classification, and many others.
However, the irregular sparsity of real-world graphs remains a major
challenge toward efficient GCN acceleration. In this paper, we propose
SAGA, a Sparsity-Agnostic Graph Convolutional Accelerator with near-
optimal workload balance.

Specifically, it consists of two unique features, an NZ-based scheduling,
and a novel accelerator architecture. Unlike conventional GCN acceler-
ators with uneven distribution of sparse matrix, the proposed NZ-based
scheduling leverages the metadata encoded in the compression format
to enable even distribution of sparse matrix at runtime, thus achieving
near-optimal workload balancing. In addition, the proposed architecture,
including a task scheduler, an accumulation table, and a partial row
accumulation unit, can support the proposed NZ-based scheduling without
data preprocessing and reformatting with low overheads. We prototyped
the proposed design through FPGAs, and our evaluation results show that
SAGA achieves up to 1.56× speedup and 2.05× energy savings on average
as compared to the prior art [1].

I. INTRODUCTION

Graph Convolutional Networks (GCNs) have been widely applied to
solve many contemporary data-intensive scientific problems, such as
traffic prediction [2], object detection [3], disease classification [4],
and many others. However, it remains a challenge to efficiently
process GCN applications involving substantial compute and memory-
intensive operations. Such unique GCN characteristics pose new com-
putation and communication requirements on the underlying hardware
design. Significant research efforts [1], [5]–[9] have been devoted to
optimizing GCN computations, facilitating their primitive operations
- Sparse-Dense Matrix Multiplication (SpMM). Even though SpMM
acceleration has been well studied [10], [11], GCNs operate on real-
world graphs whose adjacency matrix exhibits a large variation in the
distribution of non-zero elements. Such irregular sparsity consequently
leads to imbalanced workload distribution, and thus it becomes a major
obstacle toward parallel GCN acceleration, especially facing large-
scale graph datasets.

Despite many efforts, the crux of the workload imbalance has
not been fully addressed in existing solutions devised for GCN
accelerations. For example, AWB-GCN [1], like other SpMM ac-
celerators [12], employs row-wise distribution of sparse matrices,
where the sparsity varies significantly from row to row. The sparsity
variation consequently leads to workload imbalance and resource
underutilization. AWB-GCN, therefore, proposed a set of runtime
workload distribution techniques that can redirect computations to un-
derutilized computation resources. However, these techniques require
complex all-to-all switching circuitry, large task-distribution queues,
and sophisticated workload monitoring logic, which increases the
accelerator complexity and further limits its scalability.

On the other hand, non-zero (NZ) based scheduling [13], [14] have
been exploited to remedy the workload imbalance via even distribution
of non-zero elements. However, conventional NZ-based scheduling

*Equal Contribution.

approaches often require data preprocessing [13] or data reformatting
[14]. The direct applications of such an idea in GCN accelerators are
costly, as it is impractical to preprocess or reformat constantly evolving
real-world graphs with millions of parameters.

In this paper, we aim to explore an efficient application of NZ-based
scheduling for GCN accelerators without needing data preprocessing
and reformatting. This requires NZ-based scheduling to be compatible
with existing sparse formats, such as the compressed sparse row (CSR)
format. However, implementing such an idea in GCN accelerations
is very challenging. The NZ-based scheduling could jeopardize the
intactness of the sparse matrix and distribute the non-zero elements
across different compute units of the accelerator. These scattered
workloads generate partial sums that must be accumulated together.
However, accumulating partial sums over physically-distanced work-
loads incurs significant latency and area overheads, making it a
prohibitive cost for NZ-based scheduling. This further limits the
accelerator performance and scalability, mandating the deployment
of low-overhead NZ-based scheduling. We observe that the metadata
encoded in a widely-used compression format, CSR, can be lever-
aged to minimize the number of partial sums generated, reducing
the overheads associated with NZ-based scheduling. Based on this
observation, we propose low-overhead NZ-based scheduling that uses
the CSR format to assist in partial sum tracking and accumulation.
Following this methodology, we present SAGA, a Sparsity-Agnostic
Graph Convolutional Accelerator that implements the low-overhead
NZ-based scheduling. These overheads are bounded by the accelerator
configuration and do not depend on the sparsity of the input matrices,
making SAGA ideal for processing real-world power-law graphs.

Specifically, this paper makes the following contributions:

• To the best of our knowledge, this paper is the first work to
introduce NZ-based scheduling for GCN computational kernels.
The proposed scheduling can enable even distribution of CSR-
compressed sparse matrix in GCN acceleration, thus achieving
near-optimal resource utilization with ultra-low overheads. The
proposed methodology can be generalized to support a wide range
of applications where SpMM is the major computational kernel.

• We proposed an efficient and scalable hardware accelerator for
graph convolutional neural networks, including a task scheduler,
an accumulation table, and a partial row accumulation unit. These
novel components enable an efficient non-zero scheduling by
leveraging the metadata stored in the CSR compression format to
alleviate the overheads of NZ-based scheduling while eliminating
the need for data preprocessing and reformatting. This leads to
high computational parallelism with minimal overheads.

• We prototyped the proposed design through FPGAs, and experi-
mental results show that SAGA can consistently achieve high PE
utilization (> 99%), leading to 1.56× speedup and 2.05× energy
savings on average as compared to the prior art [1].

AggregationGraph

1

1

6

Combination

Feature
Vector

Vertex Edge

Adjacency
Matrix (A)

1
2
3
4
5
6

1 2 3 4 5 6

Feature
Matrix (X)

Weight
Matrix (W)

Output
Matrix

Intermedia
Matrix

13

5 6

42
2

3

5

6

1

6

Figure 1: GCN basics. The computation in a GCN layer consists of
two phases, namely Aggregation and Combination. The figure shows
an example graph with six nodes, the adjacency matrix, feature vectors,
and the weight matrix.

II. BACKGROUND

A. GCN Basics

Graph convolutional networks (GCNs) have been largely used for
processing non-Euclidean graph data due to their efficient neural
network-based schemes. Figure 1 illustrates the two main computation
phases for each graph convolution layer: Aggregation and Combina-
tion. During the aggregation phase, each vertex gathers and aggregates
the features of its neighbor vertices, which will be used for updating
its local features. As such, the aggregation phase can be formulated
as a matrix-matrix multiplication involving the adjacency matrix of
the graph and the feature matrix. During the combination phase, the
local feature vectors are used as an input for a Multi-Layer Perceptron
(MLP) network to transform such features to a lower dimension while
retaining the structural information and characteristics of the graph.
This reduced dimension feature vector of the nodes, which includes
both the node feature information and the connectivity of the nodes in
the graph, can be used to process various downstream tasks, including
node classification, link prediction, and graph classification [15].
Equation 1 shows the overall computation for lth layer of a multi-
layer GCN model, which can be considered as a chain matrix-matrix
multiplication.

X(l+1) = σ(ÂX(l)W (l)) (1)

where Â = D− 1
2 ÃD− 1

2 is the normalized adjacency matrix, Ã =
A+ I is the self-loop adjacency matrix which shows the connections
between each vertex in the graph, and I is the identity matrix. D
is the degree matrix, where Dii = ΣjÃij . X(l) denotes the feature
matrix, W (l) ∈ Rh(l)×h(l+1)

indicates the shared weight matrix and
h(l) is the feature dimension size for lth layer. σ is the non-linear
activation function, such as ReLU . Equation 2 represents the widely
used two-layer GCN model.

X2 = σ(Âσ(ÂX0W 1)W 2) (2)

The order of the chain matrix-matrix multiplication decides the
types of matrix multiplication depending on the matrix sparsity,
which varies in the Aggregation phase and Combination phase.
In the Aggregation phase, the computation can be generalized as

e f g
i j k

m n
p

a b c d
h

l
o

0 1 2 3
column index

4 5 6 7

ro
w

 in
de

x 0
1
2
3

value

col_idx

row_ptr

e f ga b c d h i j k m n pl

0

o

5 6 70 1 2 3 2 5 6 7 5 7 71 3

7 111416

0 1 2 3 4 5 6 7 8 9 1011 12 131415
Original Sparse Matrix Compressed Sparse Row (CSR) Format

Figure 2: An example of CSR decompression.

sparse-sparse matrix multiplication (SpGEMM) or sparse-dense ma-
trix multiplication (SpMM) operations, whereas the computations of
the Combination phase are considered as SpMM or dense matrix
multiplication (DenseMM) operations. Despite these differences, the
computation order of A× (X ×W) has been widely considered for
GCN computation, as it can unify the computation in both Aggregation
and Combination phases as SpMM.

B. Compressed Sparse Row (CSR)

Significant research efforts have been made to exploit various com-
pression techniques from both algorithm [16] and hardware [17] de-
signs. The major idea of different compression formats is to eliminate
zero elements from sparse matrices, reducing the excessive storage
requirements. Despite much-reduced storage size, the compression
formats could potentially jeopardize the data regularity and incur
additional latency when reconstructing the original matrices [18]. For
example, Compressed Sparse Row (CSR) stores non-zero values using
column and row information, and thus it consists of three arrays to
store row information (row ptr), column information (col idx), and
non-zero values (value) as shown in Figure 2. The adjacent values
in the row ptr can infer two critical pieces of information. Firstly, its
position in the pointer array can be used to determine the row number.
Secondly, the values also represent the start and end indices of col idx
and value arrays, and the difference of these two values indicates the
number of non-zero elements at a given row. When performing SpMM,
the coordinate information of non-zero elements of the sparse matrix
is used for indexing the dense matrix to extract the corresponding
value for multiplication at runtime. As such, row ptr and col idx
arrays will be visited sequentially in order to locate the data value.

III. PROPOSED SAGA ACCELERATOR DESIGN

GCN accelerators suffer from severe workload imbalance due to
the power-law nature of graphs. Our proposed SAGA accelerator
design aims to explore the efficient application of NZ-based schedul-
ing without any preprocessing in GCN accelerators, achieving near-
optimal workload balance with low overheads. The proposed SAGA
accelerator includes two unique designs, a novel NZ-based scheduling,
and an architectural design. First, we employ a widely-used CSR
compression format to perform NZ-based scheduling without further
reformatting the data. Then, SAGA leverages the metadata encoded
in CSR to retain the intactness of sparse formats when performing
NZ-based distribution of sparse matrices with low overheads.

A. Overview of Proposed SAGA Architecture Design

As shown in Figure 3, the proposed SAGA consists of a host CPU,
an off-chip DRAM, and an accelerator chip. The accelerator consists
of a global buffer (GLB), a task scheduler, N×N processing elements
(PEs), and a partial row accumulation unit and table. The host CPU,
with a modified compiler which is used to configure the tile size,
and loop order in the form of a set of instructions. The generated
instructions are sent to the accelerator. The GLB is used to store
both sparse and dense matrices needed for SpMM, and to store the
intermediate/final data. The task scheduler dynamically decompresses

Dataflow Control Signal

Task Scheduler

Split
Sparse

Decompress

Pipelined
SPVec-Vec Control Unit

PE

Partial Sum Output Buffer

Split
Sparse

Pipelined
SPVec-Vec Control Unit

broadcast

Partial Sum Output Buffer

SpMM Control Unit

PRP_start
Register

PRP_end
Register

Host CPU

Sparse
Buffer

Off-chip Dram

C
on

tro
lle

r

PE

Global Buffer (Sparse/Dense/Output Buffer)

MAC MAC MACMAC
Output

Register
Output

Register
Output

Register
Output

Register

Partial Row Buffer

Decompress Unit

Pa
rti

al
 R

ow

Ac
cu

m
ul

at
io

n
U

ni
t

Dense
Buffer

Ac
cu

m
ul

at
io

n
Ta

bl
e

Figure 3: Proposed Micro-Architecture of SAGA.

the sparse matrix in order to count the number of non-zero elements
and distribute them to the PE array. During task scheduling, we record
metadata about each task in an accumulation table. Upon receiving the
assigned workload, each PE utilizes its MAC array to perform SpMM.
The output of each PE will be sent directly to the global buffer or the
partial row buffers based on whether the original row spans across
multiple PEs. The output of such rows, called partial rows, will be
sent to the partial row buffer. Then, the partial row accumulation unit
uses the recorded metadata about the tasks from the accumulation table
to stitch the partial rows together to produce the final desired result.

B. PE Micro-architecture

The proposed PE architecture aims to facilitate SpMM. Figure 3
shows the PE architecture of our proposed SAGA accelerator. It
consists of both sparse and dense buffers, an SpMM control unit,
several MAC units (4 MACs in Figure 3), partial row pointer (PRP)
registers, output registers, and partial row buffers. During the task
scheduling, a part of the sparse matrix (e.g., adjacency matrix) is
fetched to the sparse buffers from GLB in CSR format, and a part of
the dense matrix (e.g., weighted features) is loaded into dense buffers
in a dense format. The SpMM control unit first decompresses the
sparse matrix to retrieve the coordinates of the non-zero value in the
sparse matrix, then the corresponding elements of the dense matrix are
read from the dense buffers and distributed to MAC units. The CSR
decompression and MAC operations are pipelined to hide the latency
incurred due to decompression as described in III-D.

C. Proposed NZ-based Scheduling

Current GCN accelerators mostly adopt row-based scheduling, in
which the sparse matrices are partitioned and assigned from row to row
as shown in Figure 4(a). Unfortunately, the sparsity varies significantly
in the sparse matrix, thus leading to unbalanced workload distribution
at the PE level. The key idea of NZ-based scheduling is to partition
the workload by using the compression metadata to count the non-zero
elements so that the workload can be estimated. Despite the promising
benefits, the direct deployment of NZ-based scheduling is challenging
in GCN accelerators, as non-zero values from the same matrix row
could be scattered and assigned to multiple processing elements.
Figure 4(b) shows the non-zero elements of the same row are assigned
to PE 0 and PE 1. Such distribution of non-zero elements creates

(a)

a b c d

l
o

e f g
h i j k

m n

PE 0
PE 1

PE 2
PE 3

a c d

g

ki
n

b

e f h

l

PE 0

PE 1

PE 2
PE 3

j
m o pp

(b)
Imbalanced Workload Balanced Workload

Non-zero
elements on
the same row
are sent to the

same PE.

Non-zero
elements
are evenly
distributed

to PEs.

Figure 4: (a) Row-based Scheduling and (b) NZ-based Scheduling of
the sparse matrix.

CSR format of original sparse matrix Accumulation Table

PRP_start: 0
PRP_end: 4

PRP_start: 4
PRP_end: 8

PRP_start: 8
PRP_end: 12

PRP_start: 12
PRP_end: 16

Task 0 Task 1 Task 2 Task 3

Task Scheduler

1 2
2 2

Task ID # of PRs
0 1

3 1

1

2

3

11
11

PR_State
01

10value
col_idx
row_ptr

e f ga b c d h i j k m n pl

0

o
5 6 70 1 2 3 2 5 6 7 5 7 71 3

7 11 1416

value
col_idx
row_ptr

a b

0
0 1

c d
2 3

value
col_idx
row_ptr 7

e f g h
5 6 7 2

value
col_idx
row_ptr 11

i j k l
5 6 7 1

value
col_idx
row_ptr

m n po
5 7 73

14 16

Figure 5: Proposed NZ-based Task scheduling in SAGA Design: (1)
Partial Row Pointer (PRP) Generation, (2) row ptr, col idx, and
value arrays partitioning, and (3) Accumulation Table Update.

two major issues, namely (1) partial sums created by different PEs
must be accumulated across physically-distributed workloads and (2)
complex tracking of non-zero elements across multiple PEs. The non-
zero elements of the adjacency matrix refer to the edges in the graph.
As the number of edges increases quadratically with increased vertices,
the overheads caused by such scattered distribution can become a
prohibitive cost for NZ-based scheduling.

To minimize these overheads, rather than tracking non-zero elements
(edges) individually, we take a higher granular approach where we
track on a per-row basis (vertices). We propose modified NZ-based
scheduling alongside the observation that the CSR compression format
encodes information about the rows of the sparse matrix that can be
leveraged to assist in a higher granular NZ scheduling.

1) Proposed Task Partitioning: The proposed NZ-based scheduling
requires generating tasks based on rows rather than individual non-zero
elements. To facilitate this, we directly partition the sparse matrix in its
CSR format into workload-balanced partitions called tasks. The task
partitioning is performed inside the proposed task scheduler. Firstly,
The task scheduler receives a tiled sparse matrix and a tiled dense
matrix from the global buffer. Then, it partitions the sparse matrix
into tasks that are then assigned to multiple PEs.

To generate workload-balanced tasks, the row ptr array can be
used to identify the non-zero elements associated with each row.
However, naively partitioning the row ptr array could compromise
the CSR compression format. For example, a 4×8 sparse matrix is
partitioned into four tasks as shown in Figure 5, and each task contains
four non-zero elements. Consequently, row ptr, col idx, and value
arrays are partitioned into four tasks. In task 0, the original partitioned
row ptr (0) could no longer be used to reconstruct the partitioned
value array according to the CSR decompression.

To resolve this issue, we introduce a new concept called partial
row pointer (PRP) to retain the coordinate information of partitioned
rows without compromising its original sparse format. If recalled, the
row ptr records the indexes (starting and ending positions in the
value array) of non-zero elements associated with the same row in the

Algorithm 1: Non-zero element-based Task Partitioning in
CSR format

Input : Number of PEs: p; CSR format of sparse matrix:
spm.val, spm.col idx, and spm.row ptr;
NNZ in the sparse matrix: spm nnz

Output: CSR matrix of each task: tasks[].val, tasks[].col idx,
and tasks[].row ptr

1 Function Tasks CSR Matrices Generation(p, spm.val,
spm.col idx, spm.row ptr, spm nnz)

2 task nnz ← spm nnz/p; // NNZ per task
3 sched nnz ← 0; // NNZ scheduled so far
4 spm row idx← 0;
5 for i ∈ [0, p) do
6 // Move part of val, col idx to task i

7 for j ∈ [0, task nnz) do
8 tasks[i].val[j]← spm.val[j + sched nnz];
9 tasks[i].col idx[j]← spm.col idx[j + sched nnz];

10 end
11 task row idx← 0;
12 // Move row ptr to task i based on PRP
13 while spm row idx < len(spm row ptr)
14 and spm.row ptr[spm row idx] >= PRP start

i
15 and spm.row ptr[spm row idx] <= PRP end

i do
16 tasks[i].row ptr[task row idx]←

spm.row ptr[spm row idx];
17 task row idx← task row idx+ 1;
18 spm row idx← spm row idx+ 1;
19 end
20 sched nnz ← sched nnz + task nnz;
21 end
22 return tasks;

value array. Resizing the value array has to reformat the starting and
ending indexes in row ptr array. As such, PRP start and PRP end
are designed to record the row information for the partitioned sparse
matrix. PRP start and PRP end will be sent to each PE for SpMM
computation which will be further discussed in Section III-D.

In general, the PRP start and PRP end for each task can be
automatically generated by using Equation 3, where Nnzp is the task
size (i.e. NNZ elements per PE), and i is the PE ID.

PRP start
i = i×Nnzp, PRP end

i = (i+ 1)×Nnzp (3)

Furthermore, the row ptr, col idx, and value arrays of each task
have to be partitioned in accordance with the task size. Given this, a
task partitioning algorithm is proposed to automatically partition the
sparse matrix, as illustrated in Algorithm 1. The col idx and value
arrays are partitioned based on the task size (lines 5-10). The row ptr
array will be sized based on PRP start and PRP end (lines 13-19).
Any row pointers within the range of PRP start and PRP end will be
included in the task. For example, as shown in Figure 5, only the first
row pointer (0) is within the PRP start (0) and PRP end (4) in task
0. As a result, the row pointer (0) is included in task 0.

2) Accumulation Table: Due to our NZ-based scheduling, the
original rows may be segmented and assigned to multiple PEs. These
segmented rows generate partial sums that must be accumulated to
produce the desired result. This requires additional information to
record the partial rows that are assigned to the PEs for partial sum
accumulation. To this end, we propose an Accumulation Table to keep
track of those partial rows.

As shown in Figure 5, the proposed accumulation table includes
Task ID, the number of partial rows (# of PRs), and the status of partial
rows (PR State). The task ID is used to indicate which PE the task is
assigned to. The number of partial rows is used to indicate how many

partial rows we have for each task. The PR State is used to indicate
whether the task needs to be accumulated with its two adjacent tasks.
We note that each task has two partial rows shared between other
adjacent tasks. As such, two bits are utilized to indicate the partial
row status, one for each potential partial row. For each bit, ‘0’ means
no partial row, and ‘1’ means a partial row. To generate the ‘PR State’
bits during the task scheduling phase, the first and the last value of the
row ptr array are compared with the ‘PRP start’ and ‘PRP end’ bits,
respectively. If they do not match, then the corresponding ‘PR State’
bit is set to ‘1’. For example, in Figure 5, the row ptr array of Task
3 has 2 elements. Since the first element, 14, does not match the
‘PRP start’ bit, 12, of the corresponding task, the first bit of ‘PR state’
is set to 1. Similarly, as the last element of the row ptr array, 16,
matches with the ‘PRP end’ bit, 16, the second bit of ‘PR state’ is
set to 0. The ‘# of PRs’ of Task 3 is ‘1’. The accumulation table
is used for inter-PE accumulation, which will be further discussed in
Section III-E.

D. SpMM Computation in SAGA

Due to our NZ-based scheduling, the sparse matrices of each task
are in the CSR format. Therefore, the SpMM computation must first
decompress the sparse matrix and then perform the inner product
matrix multiplication. The decompression unit is used to pair the
sparse matrix and dense matrix for SpMM, and the MAC array
is used to parallelize the matrix multiplication. As described in
section III-C1, the partitioning of CSR-compressed sparse matrix in
the task scheduling phase has modified the row ptr array and cannot
be decompressed using conventional CSR decompression. Therefore,
the row ptr array must be reconstructed before decompressing the
sparse matrix.

Specifically, the task scheduler sends the partitioned sparse matrix
along with PRP start and PRP end to PEs. Such information will be
used to reformat the row ptr information, thus enabling to retrieve the
coordinate information of the non-zero elements of the sparse matrix.
As shown in Figure 6 (a), it is not possible to decompress CSR format
with partitioned row ptr directly. The row ptr has to be reformed
with PRP. There are two steps required for decompression. Firstly,
the partitioned row ptr should be combined with related PRP. For
example, in task 1, PRP start (4) and PRP end (8) are appended into
row ptr vector, so the row ptr is [4, 7, 8]. Afterward, all elements in
the row ptr are subtracted by the PRP start (4). After the subtraction,
the reconstructed row ptr becomes [0, 3, 4], and it will be utilized to
perform the CSR format decompression.

To overlap the decompression latency, we propose a four-stage
decompression pipeline. An example of the proposed design is shown
in Figure 6 (b), and an illustration of the pipeline is depicted in
Figure 6 (c). These four stages include D1, D2, DR, and MAC. In
D1, we fetch two values from the row ptr vector to obtain the row
information, and then the row information will be recorded and sent
to retrieve column information. In D2, a few values will be fetched
from the col idx vector based on row information. This gives us
the coordinate information of the non-zero elements within the sparse
matrix. In the DR stage, based on the coordinate information of the
sparse element, the operands from both sparse and dense matrices
will be read for SpMM. In the proposed PE architecture, we design
an array of MACs to support inner product matrix multiplication,
as the sparse matrix will be temporarily reused to avoid costly
compression/decompression operations. In the inner product matrix
multiplication, each row of the sparse matrix will be multiplied by
each column of the dense matrix. Each column of the dense matrix is
assigned to a MAC unit from the MAC array. Therefore, the operands

Task 0 Task 1 Task 2 Task 3
Partitioned

row_ptr

Offset with
PRP_start

0 4

4

0 3

4 8

4 0 3

8 12

4 0 2

12

4

0 16

Reconstructed
row_ptr

(a)

7 11 140 16
Combine with
PRP values (0, 4) (4, 8) (8, 12) (12, 16)

Intermedia Row Pointer Value

1

2 -4-4-4 -8-8-8 -12-12-12-0-0

7 11 14

MAC1

MAC0

1 2 3 4 cycles

MAC3

MAC2 e f g h

e f g h
2765

2765

e f g h

e f g h
2765

2765
Sparse Buffer

0

4

1

5

2

6

3

7

0

4

1

5

2

6

3

7

0

4

1

5

2

6

3

7

0

4

1

5

2

6

3

7

Dense Buffer

0

value

col_idx

row_ptr

Sparse
value (row, column)

D1

Stage

(0, -)
D2 (0, 5)

DR (0, 5)

Dense
value

MAC
e f g h

5 6 7 2

0 3 4
D1

D2

DR
e 5 5 5 5

5e

MAC 1

Broadcast

MAC 0 MAC 2

Unicast

MAC 3

5e 5e 5e

D1 D2 DR
D2

MAC
DR MAC
D2 DR MAC

D1

D2 DR MAC
cycles0 1 2 3 4 5 6 7

MAC

(b) (c) (d)

Figure 6: (a) Example of reconstructing new row pointers with PRP values for all four tasks, (b) example of four-stage decompression with
reconstructed row pointers for Task 1 in PE 1, (c) illustration of pipelined four-stage decompression, and (d) SpMM computations in PE 1,
where elements from sparse and dense matrices are partitioned into four MAC units.

Partial Row
Buffer

PE 1 - Task 1

Partial Row
Buffer

PE 2 - Task 2PE 0 - Task 0

Partial Row
Buffer

PE 3 - Task 3

Output Buffer

Request Signal

Data Movement

Partial Row
Buffer

1

2
3 4

5

Accumulation Table

1 2
2 2

Task ID # of PRs
0 1

3 1

11
11

PR_State
01

10

Partial Row
 Accumulation Unit

Row 0: Task 0 + Task 1
Row 1: Task 1 + Task 2
Row 2: Task 2 + Task 3

a b c d e f g
h

i j k
l

m n

Figure 7: A workflow of partial row accumulation in SAGA.

in the sparse buffer will be broadcast to all MAC units, and the
corresponding operands of the dense matrix for each column will be
unicast to different MAC units to parallelize the SpMM. In the MAC
stage, MAC operations are performed. Each MAC unit multiplies the
paired sparse and dense elements, and it skips the zero elements to
reduce power consumption and latency. As such, the number of MAC
operations depends on the non-zero elements, and due to the NZ-
based scheduling, which balances the non-zero elements per task, the
utilization rate of PE is near-optimal. Figure 6 (d) shows all SpMM
operations for Task 1 in MAC units of PE 1.

E. Proposed Partial Row Accumulation

Due to the presence of partial rows in tasks, the partial sum
generated by these partial rows must be accumulated spatially across
the MAC array or PEs. The information recorded in the accumulation
table can be used to accumulate the partial sums.

After each PE performs the SpMM, if any partial rows exist, the
partial results of these rows will be stored in the partial row buffers.
Otherwise, the final result of a row will be sent to the output buffer in
the global buffer. To perform the partial sum accumulation, the partial
row accumulation unit will send a request to the accumulation table to
go over all the tasks in a pipelined fashion. By reading each entry, the
partial row accumulation unit will send related requests to PEs. Upon
receiving the request, the PE will send the data stored in partial row
buffers to the accumulation unit. The accumulation unit will further
perform partial row accumulation. For example, Figure 7 shows that
the ‘PR State’ bits for Task 0 are ‘01’. As the second bit is ‘1’, the
final row of Task 0 must be accumulated with the first row of the
next task. Similarly, the last row of Task 1 must be accumulated with
the first row of Task 2. The number of partial sums generated by the
partial row is equal to the number of columns in the dense matrix.
As such, the accumulation of the partial sums can be parallelized in
the accumulation unit by using multiple adders. The final results will
eventually be sent to the output buffer.

1) Upperbound of Partial row accumulation: As we are operating
on a row-wise granularity during the NZ scheduling, the sparse matrix
of each task contains only two partial rows: one partial row at the
beginning with the previous task and one partial row at the end with
the next task. As such, the number of partial rows depends on the
number of tasks, Tn. As the first task cannot have a partial row with the
previous task and the final task cannot have a partial row with the next
task, the total number of partial rows is bounded by 2Tn−2. Generally,
we assign one task per PE. Therefore the partial row accumulation
overhead scales linearly with the number of PEs and is independent
of the sparsity of the sparse matrix. This leads to low partial row
accumulation overhead as discussed in Section IV-C. Furthermore,
this overhead can be overlapped with the SpMM computation of the
next sparse tile.

IV. EVALUATION

We implemented SAGA using Verilog RTL, synthesized and imple-
mented the design using Xilinx Vivado 2020.2 on Xilinx Alveo U200
FPGA board with 892,000 LUTs, 5867 DSP slices, 35MB of on-
chip memory storage and 77 GB/s off-chip bandwidth. We evaluated
the performance of SAGA using five datasets, including three citation
graphs (Cora, CiteSeer, and Pubmed) [19], one knowledge graph
(Nell) [20], and one large graph (Reddit) [21]. The detailed sparsity
and size of data sets are summarised in Table I. We used the standard
GCN algorithm as described in the paper [22]. We measured the
execution time and PE utilization of SAGA by running each dataset
200 times at 250 MHz and taking the average of all the runs. Even
though we evaluated SAGA on FPGA, we did not leverage any FPGA-
specific properties to speed up SAGA performance. SAGA is proposed
as an ASIC accelerator.

Baseline: To demonstrate the efficiency and scalability of SAGA,
we compare it with prior GCN accelerators AWB-GCN [1],
HyGCN [5], GCNAX [6] and FlowGNN [23]. For a fair comparison,
all the baseline accelerators are scaled to have the same number of
multiply-and-accumulate units as SAGA. As HyGCN uses a hybrid
engine consisting of SIMD cores and systolic modules for the ag-
gregation phase and combination phase, respectively. We configured
the systolic array with 8× more multipliers than the SIMD cores.
Similarly, FlowGNN utilizes a hybrid engine that supports multiple
GNN models. However, we primarily compare against the GCN
variant of FlowGNN. We scaled the bandwidth and on-chip memory
to match SAGA configured with 5 MB of Global Buffer and 7 MB of
Local Buffers. Like HyGCN, we use fixed point multipliers, whereas
AWB-GCN and GCNAX use floating point multipliers and were scaled
accordingly.

Energy and Area Evaluation: To estimate the power and area of
SAGA as an ASIC accelerator, we used Synopsys Design Compiler

Table I: Size and Sparsity of the Graph Datasets

Datasets Vertexes Features Density (A, X1, X2, W)
Cora 2,708 1,433 0.18%, 1.27%, 78.0%, 100%

CiteSeer 3,327 3,703 0.11%, 0.85%, 89.1%, 100%
PubMed 19,717 500 0.023%, 10.0%, 77.6%, 100%

Nell 65,755 61,278 0.0073%, 0.011%, 86.4%, 100%
Reddit 232,965 602 0.17%, 51.6%, 60.0%, 100%

5 10 15
Epoch

0.8

0.9

1.0
CiteSeer

5 10 15
Epoch

0.8

0.9

1.0
Pubmed

0 20
Epoch

0.50

0.75

1.00
Nell

AWB-GCN SAGA

Figure 8: Average PE utilization of AWB-GCN (PE = 1K) and SAGA
(PE = 64, MAC = 16) per unit time

with the TSMC 40 nm standard library to synthesize and generate
the waveform activity file to capture the dynamic switching activity
of the logic gates. Afterward, we use Synopsys PrimeTime PX with
the waveform activity file to measure the dynamic and static power
consumption of SAGA. For the area and power of on-chip buffers, we
use Cacti 6.0 [24] with 40 nm technology.

A. Performance Evaluation

1) Workload Balance Analysis: To evaluate workload balance tech-
niques, we compare the PE utilization of SAGA with AWB-GCN.
We use performance measure counters in each PE to keep track of
the number of cycles when the MAC units are active. We divide the
execution time of each dataset into epochs following AWB-GCN’s
computational order. Each epoch roughly equals the execution of an
entire column of the dense matrix according to AWB-GCNs column-
wise computations. We configure SAGA to have 64 PE and 16 MAC
units per PE to equal 1024 MAC units in total and compare with
AWB-GCN with 1K PEs. We plot the average utilization of all PEs
for every epoch and compare AWB-GCN and SAGA in Figure 8. Since
other GCN accelerators deploy static workload balancing approaches,
we do not include them here.

Figure 8 shows that for Nell, AWB-GCN achieved a maximum PE
utilization of 0.85 while SAGA has a utilization close to 1. SAGA
can achieve up to 18% higher PE utilization for Nell and around
12% on average compared to the PE utilization of AWB-GCN. This
is because Nell has extremely irregular sparsity, exacerbating the
workload balance issue. As such, AWB-GCN struggles to improve
PE utilization above 0.85. Notice that AWB-GCN requires a handful
of epochs to achieve a constant sub-optimal PE utilization. Each epoch
can span over a few clock cycles depending on the number of rows
in the dense matrix. Moreover, AWB-GCN uses matrix blocking to
accommodate large graphs, which divides the matrices into smaller
tiles and performs computation on each smaller tile separately. This
forces AWB-GCN to rebalance the workload when a new tile of
the sparse matrix is loaded. Such a frequent need for workload
balancing can limit computational parallelism. In contrast, although
SAGA performs matrix blocking, due to its NZ-based scheduling, we
see constant PE utilization of close to 1 across tiles of the sparse matrix
making it desirable to perform workload balance during scheduling.

2) Execution Time Analysis: We compare SAGA (PE = 256,
MAC/PE = 16) with AWB-GCN (4096 PEs), HyGCN, GCNAX,

Cora
0.0
0.4
0.8
1.2
1.6
2.0

No
rm

al
ize

d
Sp

ee
du

p

CiteSeer Cora Nell Reddit

HyGCN AWB GCNAX FlowGNN SAGA

Figure 9: Normalized speedup comparison of SAGA and baseline
accelerators for different datasets.

and FlowGNN by running GCN-inference on the five datasets. Ad-
ditionally, all baselines were scaled to have the same MAC units.
Figure 9 shows the speedup of SAGA and other baseline accelerators
normalized to the execution time of AWB-GCN. Results show that
SAGA provides an average speedup of 1.59× compared to AW-GCN,
whereas GCNAX, FlowGNN, and HyGCN have an average speedup
of 0.852×, 0.905×, and 0.36× respectively. SAGA performs over
2× better than AWB-GCN for Nell and just under 1.06× for Reddit.
This variation in speedup is due to the sparsity in the Nell and
Reddit graphs. Nell has extremely high and variable sparsity which
causes PE underutilization and, subsequently, higher execution time
for AWB-GCN, Meanwhile, Reddit is more regular making GCN
processing inherently balanced with high PE utilization. However,
unlike Reddit, most real-world power-law graphs are extremely im-
balanced. Therefore it is desirable to have a GCN accelerator like
SAGA that performs well with highly irregular graphs. Note that while
GCNAX and FlowGNN optimize other aspects of GCN processing
such as data reuse and parallelization strategies, the PE utilization
reduces significantly when scaling up the design leading to lower
overall performance. The speedup improvement for SAGA compared
to HyGCN, FlowGNN, and GCNAX is primarily due to its near-
optimal workload balance and low-hardware complexity.

B. Scalability Study

To evaluate the scalability of SAGA, we run GCN inference on the
five datasets and vary the number of PEs. To provide a fair comparison
with AWB-GCN, HyGCN, GCNAX, and FlowGNN, we equate the
overall number of MAC units in SAGA with a fixed 16 MAC/PE.
Additionally, we normalize the execution time of all configurations
of accelerators to the execution time of AWB-GCN with 512 PEs
configuration. FlowGNN and GCNAX use smaller evaluation designs
which alleviate PE underutilization. To make a realistic comparison,
when scaling up their design, we estimate the PE underutilization,
given their workload balance scheme and PE mapping strategies, and
normalized their performance metrics accordingly.

1) PE Utilization: Figure 10 shows the PE utilization of SAGA
with various baseline accelerators. The average PE utilization of
SAGA, AWB-GCN, GCNAX, HyGCN, and FlowGNN reduces by
0.2%, 4.875%, 20.569%, 13.712%, 27.143% respectively across differ-
ent data sets when scaling up from 512 to 4K PEs. While AWB-GCN’s
PE utilization degradation is lower than the other baselines owing to
its runtime workload rebalancing, For massively parallel architectures,
such reduction in PE utilization can cause significant performance
degradation. For highly imbalanced graphs such as Nell, the PE
utilization of SAGA, AWB-GCN, GCNAX, HyGCN, and FlowGNN
reduces by 0.19%, 9.01%, 23.41%, 24.10%, 49.7% respectively. Such
severe PE underutilization for graphs is undesirable as real-world
graphs follow the power-law distribution, which makes them highly
imbalanced. SAGA’s reduction in PE utilization is minimal due to its
non-zero scheduling.

512 1K 2K 4K

0.6

0.8

1.0

PE
 U

til
iza

tio
n

Cora

512 1K 2K 4K
0.6

0.8

1.0
CiteSeer

512 1K 2K 4K

0.8

0.9

1.0
PubMed

512 1K 2K 4K

0.50

0.75

1.00
Nell

512 1K 2K 4K

0.90

0.95

1.00
Reddit

HyGCN AWB-GCN GCNAX FlowGNN SAGA

Figure 10: Scalability evaluation: Overall PE utilization of SAGA, AWB-GCN, GCNAX, FlowGNN and HyGCN with varying PE number.
We use a fixed MAC/PE = 16 for SAGA and vary the number of PEs to have the same number of MAC units as others

512 1K 2K 4K

5

10

No
rm

al
ize

d
Sp

ee
du

p Cora

512 1K 2K 4K
0

10

CiteSeer

512 1K 2K 4K
0

5

10
PubMed

512 1K 2K 4K

5

10

15
Nell

512 1K 2K 4K
0

5

Reddit
HyGCN AWB-GCN GCNAX FlowGNN SAGA

Figure 11: Scalability evaluation: Overall speedup of SAGA, AWB-GCN, GCNAX, FlowGNN, and HyGCN with varying PE numbers. We
use a fixed MAC/PE = 16 for SAGA and vary the number of PEs to have the same number of MAC units as others

2 4 8 16 32 64
MACs per PE

0

2

4

6

Lo
g 2

(N
or

m
al

ize
d

Sp
ee

du
p) Actual Speedup

Ideal Speedup

(a)

Cora
CiteSeer

PubMed Nell
Reddit

0
100

101

102

103

104

105

106

107

108

of

 R
ow

s

2

4

6

8

10

12

of

 P
Es

 A
ss

ig
ne

d

(b)

Figure 12: (a) Performance scaling with an increase in MACs/PE with
64 PEs (b) Number of rows for each dataset assigned to varying
number of PEs.

2) Performance: As shown in Figure 11, the overall speedup scales
well for SAGA compared to AWB-GCN, HyGCN, GCNAX, and
FlowGNN, which is similar to the PE utilization scaling, indicating
the correlation between performance and PE utilization. HyGCN does
not completely mitigate the workload imbalance among the SIMD PE
cores during the aggregation phase, which is the majority of execution
time, leading to poor performance speedup with an increase in the
number of PEs. On the other hand, AWB-GCN has a better speed-up
improvement with an increase in PE cores as it rebalances workload
distribution during runtime. However, for a large number of PEs, the
performance gain is sub-optimal, especially for highly irregular graph
data such as Nell. This is due to the inability of AWB-GCN’s runtime
workload auto-tuning to converge to a more balanced workload. On
the other hand, the performance of SAGA scales linearly with an
increase in the number of PEs. This is because SAGA does not suffer
from the same drawbacks as other accelerators. Therefore SAGA has
an average normalized speedup of 11.83× compared to AWB-GCNs
speedup of 7.60×. Irrespective of the sparsity, SAGA can schedule
balanced workloads, thus, achieving a normalized speedup of 15.03×
compared to AWB-GCN’s speedup of 7.28× for the highly irregular
Nell dataset when configured with 4K PEs.

Finally, SAGA can exploit feature-level parallelism by increasing
the number of MAC units per PE. Each MAC in a PE operates on a
different feature (column of the dense matrix) of the same vertex.
To evaluate the performance scaling by increasing the number of
MACs/PE, we run inference using the five datasets and report the
average execution time for MACs/PE values of 2, 4, 8, 16, 32, and
64. Figure 12 (a) shows the normalized speedup in logarithmic scale.
Due to the computation scheduling among the MAC units within a
PE, we see a near-ideal performance scaling. For a large number of
MACs per PE, the speedup is lower than ideal. This is due to the
limited number of features for different layers of GCN models. For
example, while layer 1 for Cora has 64 features, layer 2 has only 16.

C. NZ-Scheduling Overhead Analysis

The microarchitecture of SAGA allows the task scheduling, de-
compression, and partial sum accumulation to be overlapped with the
computation. The latency from task scheduling is due to internal on-
chip data movement from the global buffer to the local buffers of each
PE. This latency is minimal due to three reasons. (i) The sparse data
is stored on-chip in compressed format, (ii) Task scheduling performs
sequential reads and writes to the global buffer and local buffer
respectively, and (iii) The global buffer and local buffer are highly
banked increasing their bandwidth. The decompression is performed
at the PE level and is pipelined with the MAC computation. Therefore,
most of the decompression latency is hidden. Finally, most of the
partial sums are accumulated within the PE. The remaining partial
sum accumulation across PEs due to the presence of partial rows is
small in number and can be overlapped with the execution of the next
set of tasks. Figure 12 (b) shows the number of rows that are assigned
to multiple PEs. Due to our NZ scheduling, we observe that more than
99% rows are assigned to one PE, and less than 1%, will be split across
multiple PEs. For Nell, due to the irregular sparsity, there are few rows
that exhibit high density. Our NZ scheduling distributes such rows
across multiple PEs with one of them assigned to 12 PEs. However,
the number of partial row accumulations is limited by the accelerator
configuration and is negligible compared to the total execution time.

Cora
CiteSeer

Pubmed Nell
Reddit

0

20

40

60

80

100

En
er

gy
 P

er
ce

nt
ag

e
(%

)

Task
Scheduling
Decompression

Partial Sum
Accumulation
Computation

(a)

Global
Buffer

Control
 Logic

Local
Buffer

NOC

MAC

45.5%

14.6%

5.2%

31.8%

2.9%

(b)

Figure 13: (a) Energy Breakdown and (b) Area Breakdown.

Table II: Energy and Latency Analysis

Platform Metrics Cora CiteSeer Pubmed Nell Reddit

AWB-GCN Latency (ms) 2.3E-3 4E-3 3E-2 1.6 31.8
EE (Graphs/kJ) 3.1E6 1.9E6 2.5E5 4.1E3 2.1E2

SAGA Latency (ms) 1.49E-3 2.22E-3 2.04E-2 0.77 30.0
EE (Graphs/kJ) 6.23E6 3.67E6 5.08E5 1.11E4 3.32E2

D. Energy Analysis

Figure 13 (a) shows the breakdown of energy consumed by each
operation of SAGA. Task Scheduling, decompression, computation,
and partial sum accumulation account for 56%, 23%, 20%, and 1% of
total energy on average, respectively. Task scheduling involves moving
the data from the global buffer to the local buffer and decompression
involves reading the indirection tables of the compression format
stored in the on-chip buffers. Since both of the components reads and
write to the on-chip buffers, it accounts for around 79% of the overall
energy consumed. Meanwhile, computation involves MAC operations,
and partial sum accumulation involves aggregation which consumes
around 21% of total on-chip energy. Table II shows the energy effi-
ciency of SAGA compared to AWB-GCN. SAGA achieved an average
energy improvement of 2.05× and up to 2.68× for Nell Dataset. This
can be attributed to the following reasons (i) Unlike AWB-GCN’s large
all-to-all network, SAGA’s is lightweight and consumes much less
dynamic power, and (ii) AWB-GCN’s runtime workload rebalancing
and monitoring of workload consume a large portion of the dynamic
power, whereas SAGA does not require additional monitoring logic.

E. Area Analysis

Figure 13 (b) shows the area consumed by each logical resource
of SAGA’s architecture. Global buffer and local buffers account for
over 77% of the total area, whereas MAC units consume 14.6%. Due
to SAGA’s lightweight networks, the area occupied by the network is
around 5.2%. Finally, the control logic takes 2.9% of the total area.

V. RELATED WORK

A. Sparse Matrix Multiplication Accelerators

A lot of effort has been put into accelerating sparse matrix multipli-
cation (SpGEMM and SpMM), resulting in the development of various
solutions which include CPU-based [25], GPU-based [26], FPGA-
based [27], and ASIC-based [28] designs. CPU- and GPU-based
solutions [25], [26] aim to increase computational parallelism through
the use of a multiply-insert approach but often result in high power
consumption and latency due to the utilization of general-purpose
computing units. To address this issue, FPGA-based designs [27]
incorporate customized PE and interconnection architectures to en-
hance data locality and energy efficiency. The approaches proposed in
OuterSpace [28] and SpArch [29], which are based on outer-product

SpGEMM and ASIC accelerator designs, respectively, aim to improve
data reuse. However, these existing solutions offer limited guidance
on how to support chain matrix multiplication in GCNs efficiently.

B. Graph Processing Accelerators

Graph processing accelerators are specialized hardware designed for
a set of algorithms and techniques used for analyzing and manipulating
graphs, such as graph traversal algorithms (BFS or DFS), graph
clustering algorithms (k-means or spectral clustering), and graph
partitioning algorithms (METIS or KaHIP). Different from GCNs,
each vertex is associated with a single scalar instead of a vector.
Memory bandwidth is the main bottleneck for graph processing, and
most graph processing accelerators are PIM-based with different graph
partitioning and mapping algorithms. GraphR [30] is ReRAM-based
and performs SpMV using ReRAM crossbars. Graphicionado [31]
and GraphQ [32] use destination-oriented mapping to optimize off-
chip bandwidth consumption. ScalaGraph [33] proposes row-oriented
mapping to reduce NoC communication. All of them only support
simple operations in the scatter phase. Therefore, they can’t be
migrated directly to GCNs without significant changes.

C. Graph Convolutional Network Accelerators

GCN accelerators are designed to enhance the performance of chain
matrix multiplications. For instance, HyGCN [5] utilizes two separate
computing engines to perform aggregation and combination opera-
tions. The aggregation engine suffers from an unbalanced workload
due to varying degrees of the graph. To tackle this, all the cores
of the aggregation engine operate on different features of the same
vertex. However, the parallelism of the aggregation engine is bounded
by the feature number. For example, the number of features for the
second layer of GCN for Cora, CiteSeer, and Pubmed is only 16. On
the other hand, AWB-GCN [1] assigns workload to each PE based
on the row number. Then, it performs a runtime re-balancing of the
workload by continuously monitoring the PE workload. However,
it often suffers from PE underutilization as the sparsity can vary
tremendously within the rows causing it to rebalance the workload very
often. Furthermore, it employs complex workload monitoring logic
and all-to-all switching circuitry that limits its scalability and energy
efficiency. The accelerator design proposed by Auten et al. [34] focuses
on efficiently handling irregular data movement to accelerate GCN
executions. GRIP [35] divides GCN inference into two phases, vertex-
centric and edge-centric execution, and employs specialized hardware
units for each phase. GraphACT [36] aims to accelerate GCN training
on heterogeneous systems with CPU and FPGA and utilize multiple
hardware-software co-optimizations. GCNAX [6] and SGCNAX [37]
provide a flexible GCN architecture that supports adaptive dataflow
and improves resource utilization.

VI. CONCLUSION

In this paper, we propose SAGA, an efficient and scalable GCN
accelerator with near-optimal workload balancing. Specifically, SAGA
consists of two unique designs, a NZ-based scheduling, and a novel
accelerator architecture. The proposed NZ-based scheduling enables
efficient distribution of sparse matrix at runtime, thus achieving near-
optimal workload balancing. In addition, the proposed accelerator
architecture, including a task scheduler, an accumulation table, and
a partial row accumulation unit, can support the proposed NZ-
based scheduling without data preprocessing and reformatting. We
prototyped the proposed design through FPGAs, and our simulation
results show that SAGA achieves 1.56× speedup and 2.05× energy
savings on average as compared to the prior art [1].

REFERENCES

[1] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo, S. Che,
S. Reinhardt, and M. Herbordt. AWB-GCN: A graph convolutional
network accelerator with runtime workload rebalancing. In Proceedings
of IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 922–936. IEEE, 2020.

[2] X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang, C. Jia, and J. Yu.
Traffic flow prediction via spatial temporal graph neural network. In
Proceedings of The Web Conference (WWW), pages 1082–1092. IEEE,
2020.

[3] P. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. SuperGlue:
Learning feature matching with graph neural networks. In Proceedings
of IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4937–4946. IEEE, 2020.

[4] S. Wang, V. Govindaraj, J. Górriz, X. Zhang, and Y. Zhang. Covid-19
classification by FGCNet with deep feature fusion from graph convolu-
tional network and convolutional neural network. In Information Fusion,
pages 208–229. Elsevier, 2021.

[5] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie. HyGCN: A GCN accelerator with hybrid architecture.
In Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 15–29. IEEE, 2020.

[6] J. Li, A. Louri, A. Karanth, and R. Bunescu. GCNAX: A flexible
and energy-efficient accelerator for graph convolutional neural networks.
In Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 775–788. IEEE, 2021.

[7] T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. Herbordt,
Y. Lin, and A. Li. I-GCN: A graph convolutional network accelerator
with runtime locality enhancement through islandization. In Proceedings
of IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1051–1063. IEEE, 2021.

[8] L. Yin, J. Wang, and H. Zheng. Exploring architecture, dataflow, and
sparsity for gcn accelerators: A holistic framework. In Proceedings of
Great Lakes Symposium on VLSI (GLSVLSI), page 489–495. ACM, 2023.

[9] B. Zhang, R. Kannan, and V. Prasanna. BoostGCN: A framework
for optimizing GCN inference on FPGA. In Proceedings of Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 29–39. IEEE, 2021.

[10] G. Huang, G. Dai, Y. Wang, and H. Yang. GE-SpMM: General-purpose
sparse matrix-matrix multiplication on GPUs for graph neural networks.
In Proceedings of International Conference on High Performance Com-
puting Networking, Storage and Analysis (SC), pages 1–12. IEEE, 2020.

[11] M. Zhu, T. Zhang, Z. Gu, and Y. Xie. Sparse tensor core: Algorithm and
hardware co-design for vector-wise sparse neural networks on modern
GPUs. In Proceedings of IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 359–371. IEEE, 2019.

[12] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication
on throughput-oriented processors. In Proceedings of International
Conference on High Performance Computing Networking, Storage and
Analysis (SC), pages 1–11. IEEE, 2009.

[13] L. Song, Y. Chi, A. Sohrabizadeh, Y. Choi, J. Lau, and J. Cong.
Sextans: A streaming accelerator for general-purpose sparse-matrix dense-
matrix multiplication. In Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), pages 65–77.
ACM, 2022.

[14] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang.
Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations. In Proceedings of IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 689–702. IEEE,
2020.

[15] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. Wiltschko. A
gentle introduction to graph neural networks. In Distill, 2021.
https://distill.pub/2021/gnn-intro.

[16] S. Kwon, D. Lee, B. Kim, P. Kapoor, B. Park, and G. Wei. Structured
compression by weight encryption for unstructured pruning and quantiza-
tion. In Proceedings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1909–1918. IEEE, 2020.

[17] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul,
and T. Krishna. SIGMA: A sparse and irregular GEMM accelerator
with flexible interconnects for DNN training. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 58–70. IEEE, 2020.

[18] E. Qin, G. Jeong, W. Won, S. Kao, H. Kwon, S. Srinivasan, D. Das,
G. Moon, S. Rajamanickam, and T. Krishna. Extending sparse tensor

accelerators to support multiple compression formats. In Proceedings
of IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 1014–1024. IEEE, 2021.

[19] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad.
Collective classification in network data. In AI magazine, pages 93–106,
2008.

[20] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka, and
T. Mitchell. Toward an architecture for never-ending language learning.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pages 1306–1313. AAAI, 2010.

[21] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning
on large graphs. In Proceedings of Advances in neural information
processing systems (NeurIPS), pages 1024–1034. MIT Press, 2017.

[22] T. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. In arXiv preprint arXiv:1609.02907, 2016.

[23] R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao. FlowGNN:
A dataflow architecture for real-time workload-agnostic graph neural
network inference. In Proceedings of IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 1099–1112.
IEEE, 2023.

[24] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. CACTI 6.0:
A tool to understand large caches. In University of Utah and Hewlett
Packard Laboratories, Technical Report, 2009.

[25] A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams. Exploiting multiple levels of parallelism
in sparse matrix-matrix multiplication. In SIAM Journal on Scientific
Computing, pages C624–C651, 2016.

[26] W. Liu and B. Vinter. An efficient GPU general sparse matrix-matrix
multiplication for irregular data. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), pages 370–381.
IEEE, 2014.

[27] C. Lin, N. Wong, and H. So. Design space exploration for sparse matrix-
matrix multiplication on FPGAs. In International Journal of Circuit
Theory and Applications, pages 205–219, 2013.

[28] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H. Kim, D. Blaauw, T. Mudge, and R. Dreslinski. OuterSPACE: An
outer product based sparse matrix multiplication accelerator. In Proceed-
ings of IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 724–736. IEEE, 2018.

[29] Z. Zhang, H. Wang, S. Han, and W. Dally. SpArch: Efficient architecture
for sparse matrix multiplication. In Proceedings of IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
261–274. IEEE, 2020.

[30] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen. GraphR: Accelerating
graph processing using reram. In Proceedings of IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
531–543. IEEE, 2017.

[31] T. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics. In Proceedings of IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[32] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and
X. Qian. GraphQ: Scalable pim-based graph processing. In Proceedings
of IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 712–725. IEEE, 2019.

[33] P. Yao, L. Zheng, Y. Huang, Q. Wang, C. Gui, Z. Zeng, X. Liao, H. Jin,
and J. Xue. ScalaGraph: A scalable accelerator for massively parallel
graph processing. In Proceedings of IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 199–212. IEEE,
2022.

[34] A. Auten, M. Tomei, and R. Kumar. Hardware acceleration of graph
neural networks. In Proceedings of ACM/IEEE Design Automation
Conference (DAC), pages 1–6, 2020.

[35] K. Kiningham, C. Re, and P. Levis. GRIP: A graph neural network
accelerator architecture. arXiv preprint arXiv:2007.13828, 2020.

[36] H. Zeng and V. Prasanna. GraphACT: Accelerating GCN training on
CPU-FPGA heterogeneous platforms. In Proceedings of ACM Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA), pages
255–265. ACM, 2020.

[37] J. Li, H. Zheng, K. Wang, and A. Louri. SGCNAX: A scalable graph
convolutional neural network accelerator with workload balancing. In
IEEE Transactions on Parallel & Distributed Systems, pages 2834–2845,
2022.

