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Abstract—Contemporary applications and cloud workloads
often comprise multiple Deep Neural Network (Multi-DNN)
models. These models exhibit significant variations in compu-
tation, memory, and communication characteristics. For such
heterogeneous workloads, a static and rigid hardware accelerator
can no longer provide efficient and high-performance execution.
To this end, we propose a versatile accelerator, called Polyform,
to support the concurrent execution of different DNN models
with the goal of improving energy and performance efficiency.
Specifically, Polyform features two unique designs from both
hardware and scheduling standpoints. On the hardware level, we
have designed a flexible interconnection network that facilitates
the formation of multiple sub-accelerators. Our design allows
for spatial resource partitioning, including bandwidth and com-
putation, while also providing effective communication support
for various parallelism choices. On the scheduling level, Polyform
employs a novel two-stage Genetic Algorithm (GA) to explore
and identify the optimal configurations such as task orders,
partition size, dataflow styles (e.g., weight or output stationary),
and bandwidth. Our simulation shows that Polyform achieves
remarkable results compared to prior work, including up to
77.8% energy reduction and a 2.79× improvement in throughput
as compared to prior work [1]–[3].

I. INTRODUCTION

The success of Deep Neural Networks (DNNs) is tightly
coupled to the increased computing power enabled by the
underlying hardware. Specialized hardware accelerators [4]–
[7] have been designed for specific DNN models. However, the
diverse nature of DNN models, serving various applications,
has resulted in varying computation and communication char-
acteristics. Static accelerator designs can no longer efficiently
meet the demands of executing multiple DNNs.

This challenge involves a spatio-temporal perspective in
executing multi-DNNs. From the temporal point of view,
efficient management of shared resources in a monolithic
accelerator across different time steps is crucial for optimal
performance and resource utilization. The simultaneous exe-
cution of multiple DNNs could lead to resource contention in
shared resources like memory bandwidth and computational
units, resulting in performance degradation or resource under-
utilization [8]. Moreover, effective task scheduling, including
order of execution, dependency management, and workload
balancing, is also important.

From the spatial standpoint, an accelerator needs to be
partitioned spatially, simultaneously accommodating multi-
DNN with different computation and communication require-
ments. For example, Planaria [2] proposed a reconfigurable
architecture that can concurrently execute various DNN tasks,

Table I: A comparison of the state-of-the-art designs for Multi-
DNN Execution.

Design Spatial Temporal Partition Flexible Flexible
Partitioning Scheduling Granularity Dataflow Bandwidth

PREMA [1] ✗ ✓ Low ✗ ✗

Planaria [2] ✓ ✓ High ✗ ✗

MAGMA [3] ✓ Medium ✓

Polyform ✓ ✓ High ✓ ✓

✓ Full support ✗ No support Limited support

where compute/memory resources are dynamically allocated.
MAGMA [3] proposed a design running multi-DNN with a
couple of dataflow choices. However, none of the current
accelerators can provide all the desired spatial and temporal
functionalities in one unified architecture as shown in Table I.

In this paper, we introduce Polyform, a versatile and flexible
accelerator capable of executing multi-DNN on one accelera-
tor. Polyform consists of optimized designs at both the hard-
ware and scheduling levels. On the hardware level, Polyform
supports a flexible interconnection network that can facilitate
the formation of multiple sub-accelerators. Our design allows
for spatial resource partitioning, including bandwidth and
computation, while also providing effective communication
support for various dataflows. Polyform facilitates various
communications, specifically aligning the traffic pattern re-
quirements (e.g., broadcast and unicast communications) and
the dataflow in each sub-accelerator. On the scheduling level,
Polyform employs a novel two-stage Genetic Algorithm (GA).
In the first stage, the algorithm prioritizes finding an optimal
task allocation policy and determining the suitable number
of sub-accelerators. Once the optimal partitioning scheme for
each workload is identified, the second stage configures the
architectural settings within those sub-accelerators, including
processing elements, bandwidth, and different dataflows (such
as weight or output stationary). Through our simulation, we
observe that Polyform achieves up to 77.8% energy reduction
and 2.79× throughput improvement as compared to prior
work [1]–[3].

II. POLYFORM ARCHITECTURE DESIGN

Our proposed accelerator design consists of two unique
designs: (1) a versatile and flexible DNN architecture with
the ability to be spatially partitioned for multiple DNN tasks
with any desired size and dataflow, and (2) a holistic schedul-
ing framework that is capable of managing task allocation,
resource allocation, and dataflow selection at the same time.
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Figure 1: (a) The proposed overall architecture, (b) an example
of accelerator partitioning with five running DNN tasks, and
(c) the flexible router. (d) and (e) are detailed designs of a
horizontal and a vertical switch inside the router, respectively.

A. Proposed Accelerator Micro-architecture

In this work, we use a 4×4 design to illustrate the function-
alities of the proposed accelerator, as shown in Figure 1(a).
The accelerator is equipped with a genetic algorithm (GA)-
based scheduler, distributed global buffers (banked buffers),
an array of PEs, and a flexible interconnect. Consequently,
it can be dynamically partitioned into multiple individually
running sub-accelerators, and each sub-accelerator is sized and
configured to support its running DNN tasks, as shown in
Figure 1(b). All the PEs are interconnected by a flexible NoC,
and PEs and banked global buffers are connected by a crossbar
(XBAR) to provide all-to-all connections. Each PE consists of
16 MAC units for matrix multiplication, buffers for weight
filters, input activations, and output activations.

B. Flexible Interconnection Network Design

Conventional routers with complex virtual channels and
crossbars are designed to address the unpredictable CPU cache
and memory traffic. However, multi-DNN execution offers
optimization opportunities due to its predictable, rhythmic
traffic, in which data propagates in a row-wise or column-wise
manner. Given this, complex crossbars and virtual channels are
no longer needed.

In this work, we propose a flexible router and link design to
leverage the mentioned opportunities. Specifically, we design
low-cost vertical and horizontal switches supporting column-
and row-wise communications as shown in Figure 1(c). Both
vertical and horizontal switches can support either bus-based
or packet-based communications. Figure 1(d) and Figure 1(e)
show the detailed design for each switch. For both switches,
the input ports can be used to continue the data propagation
through a wire like a bus or a buffer. Multiple transistors

Table II: Supported Dataflows in Ployform and Their Com-
munication Patterns (Router Modes).

Parallelism Weight Filter Input Activation Output Activation Temporal
Dimension Multi Uni Multi Uni Multi Uni Stationary

C ✓ ✓ ✓ WS/IS/OS
K ✓ ✓ ✓ WS/IS/OS

(R, S) ✓ ✓ ✓ WS/IS/OS
(X’, Y’) ✓ ✓ ✓ IS/OS
(C, R, S) ✓ ✓ ✓ WS/IS/OS

(K, X’, Y’) ✓ ✓ ✓ IS/OS
(C, R, S, K, X’, Y’) ✓ ✓ ✓ N/A
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Figure 2: An example of supporting different dataflows for
different tasks in different sub-accelerators.

are implemented, acting as a link switch to turn off the data
transmission when the router is placed at the edge of the
partitioned network to avoid signal interference. Alternatively,
transistors can be replaced by tri-state link repeaters [9] but
with a much higher cost.

C. Flexible Partitioning and Dataflow Support

The flexible router and links enable the sub-accelerator par-
titioning by turning on the link switch. The signal propagation
is separated among partitions. Each partitioned accelerator
can be configured according to its desired dataflow, including
spatial parallelism (C, R, S, K, X, Y, X’, Y’) and temporal
reuse strategy (weight stationary (WS), input stationary (IS),
and output stationary (OS)). Table II summarizes the charac-
terizations and router mode for different dataflows. Since the
partial sums are accumulated hop by hop, it requires unicast
support at either horizontal or vertical direction. As such, at
least one of the weight filter and input activation matrices
should be distributed in a unicast manner.

To illustrate Polyform’s mapping strategy, we present two
convolutional layer examples as Task 0 and Task 1 in
Figure 2. Task 0 and Task 1 are mapped to partitioned sub-
accelerators 0 and 1, respectively. For Task 0, the weights
(wj

i ) are supplied to their corresponding PEs in a multicast
mode, while the inputs (Iji ) are supplied in a unicast mode. In
such a case, the vertical switches are configured as a bus-
based network. The banked global buffer acts as a master
node, whereas all the PEs at each row or column are slave
nodes. The horizontal switches are configured as a packet-
based network, where the packets are transmitted hop by hop,
reaching their destination. The large dimensions of the input
activation favor the input stationary dataflow, as the reuse
of the input elements avoids redundant memory access for
the large matrix. The following equation shows how different
kernels (wj

i ) are multicasted to the first and second row (row0



and row1) of sub-accelerator 0, while the inputs (Iji ) are
pinned to the PEs and reused for two consecutive timesteps,
t0 and t1 (underscores denote stationary elements).

Task 0


t0

{
row0 : (I00 × w0

0) + (I01 × w0
1) + (I06 × w0

2) + (I07 × w0
3)

row1 : (I01 × w0
0) + (I02 × w0

1) + (I07 × w0
2) + (I08 × w0

3)

t1

{
row0 : (I00 × w3

0) + (I01 × w3
1) + (I06 × w3

2) + (I07 × w3
3)

row1 : (I01 × w3
0) + (I02 × w3

1) + (I07 × w3
2) + (I08 × w3

3)

For Task 1, however, the large channel size of the filter,
together with the small size of the input channel necessitates
a weight stationary dataflow. The weights are stored in the
PE buffers while the inputs are iterated through different time
steps. Polyform’s flexible router links multicast the same input
element (Iji ) across each row of the sub-accelerator, in which
NoC is configured as a bus. Meanwhile, the weight elements
(wj

i ) are unicasted vertically to each PEs. For Task 1 in sub-
accelerator 1, we compute the following in t0 and t1 timesteps:

Task 1


t0

{
row0 : (I00 × w0

0) + (I00 × w3
0) + (I00 × w6

0) + (I00 × w9
0)

row1 : (I01 × w0
1) + (I01 × w3

1) + (I01 × w6
1) + (I01 × w9

1)

t1

{
row0 : (I01 × w0

0) + (I01 × w3
0) + (I01 × w6

0) + (I01 × w9
0)

row1 : (I02 × w0
1) + (I02 × w3

1) + (I02 × w6
1) + (I02 × w9

1)

Such adaptive interconnects within each individual sub-
accelerator enable an opportunistic choice of dataflow, in-
troducing a new parameter when exploring the architectural
design space for Polyform.

D. Routing Deadlock Avoidance
Routing deadlock can arise as a result of circular channel

dependency. To resolve the circular channel dependency, turn-
restricted routing algorithms or deadlock recovery techniques
are implemented [10], [11] to remove the circular dependency.
However, the data movement flows at each row/column in
Polyform, and thus the decoupled horizontal and vertical
data paths are exempt from the prerequisites forming any
dependency.

III. POLYFORM TWO-STAGE GA-BASED SEARCH MODEL

GA, inspired by biological evolution, excels in address-
ing complex, multi-objective problems [12]. However, its
applicability is limited when dealing with concurrent task
allocation, resource allocation, and dataflows due to vast
design possibilities and problem variations. Our approach
involves treating the design space exploration as two distinct
optimization problems: task allocation, referred to as ‘stage 1,’
and resource allocation and dataflow selection, referred to as
‘stage 2’. These problems are addressed using a unified GA,
as illustrated in Figure 3.

1) Stage 1 - Task Allocation: During the execution of
multiple DNN models, each model can be divided into layers,
referred to as tasks. The inherent independence between dif-
ferent DNNs allows for concurrent, non-blocking execution
of these tasks, offering spatial parallelization opportunities.
In stage 1, our aim is to achieve optimal task allocation and
determine the appropriate number of sub-accelerators.

Yes

No

No

Finish

Yes

Stage 1: Task Allocation

Stage 2: Resource Allocation & Dataflow Selection

Task  
Lists 

Generate 
Genes 

task id 
task priority 
sub-accel. 
index 

Initialize 
Genomes

Fitness Cal. 
(Fitness Value

from Stage
Two)

New 
Genomes

Termination
Criteria

Initialize 
Genomes

Gene Decoder 
(Allocated Resource,
Selected Dataflow)

Fitness Cal. 
(Hardware
Simulation)

Termination
Criteria

New
Genomes

Gene Decoder 
(Task assignment,  

# of partitions)

Generate 
Genes 

PE alloc. 
BW alloc. 
supported 
dataflow 

Figure 3: Illustration of our proposed two-stage genetic algo-
rithm for task allocation (stage 1) and resource allocation and
dataflow selection (stage 2).

2) Stage 2 - Resource Allocation and Dataflow Selection:
Similarly, this stage starts with gene generation, but each
gene represents the number of PEs, bandwidth, and dataflow
selected for each sub-accelerator. Gene decoder feeds task
allocation, dataflow, and resource allocation information into
MAESTRO [13] to calculate fitness.

Fitness calculation is used to evaluate the configuration
with specific objectives (e.g., latency, energy, or energy-delay
product). Here, the fitness calculation is divided into two
stages but correlated, as the maximum fitness value obtained
in the second stage is returned to the first stage. Our two-
stage GA terminates after 10,000 iterations, as determined
by our empirical study, or when the fitness converges. The
entire search duration ranges from 20 to 30 seconds, and
the overhead can be overlapped with the execution time of
multiple DNN workloads.

IV. EVALUATION

A. ASIC Synthesis Tools

To evaluate the area and power consumption, we use the
Synopsys Design Compiler NXT with the Synopsys SAED-
PDK 32nm technology for the synthesis of Polyform’s archi-
tecture and estimate the power using Synopsys PrimeTime PX
with worse case PVT corner.

B. Simulation Setup

We compare Polyform with several state-of-the-art designs:
PREMA [1], which utilizes a single accelerator with se-
quential task scheduling based on priorities; Planaria [2],
which supports dynamic spatial partitioning with a fixed
dataflow and compute-memory resource ratio; and MAGMA-
HO and MAGMA-HE [3], which consist of four homogeneous
and heterogeneous sub-accelerators, respectively. Each sub-
accelerator in MAGMA is designed with different numbers of
PEs and dataflows. All designs have identical specifications:
a 16×16 PE array, a memory bandwidth of 64 GB/s, and a
global buffer size of 16 MB. Each PE includes 16 KB weight
buffers, 8 KB input buffers, 8 KB output buffers, and 16 16-
bit MAC units. We select a set of benchmark applications to
examine different DNN applications with unique computation
characteristics shown in Table III. For multi-DNN execution,
each dataset consists of 20 randomly selected tasks from
different application domains.

C. Performance Analysis

Figure 4 shows that Polyform outperforms PREMA, Pla-
naria, MAGMA-HO, and MAGMA-HE by factors of 2.79×,
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Table III: Benchmarks Description
Domain DNN Model
Image Classification (IC) ResNet50, Mobilenets
Machine Translation (MT) GNMT, Transformer-XL
Recommendation System (RS) WnD, DIN
Mixed Workload Random tasks from IC, MT, and RS

1.44×, 1.22×, and 1.28× on average. In the RS benchmark,
Polyform achieves a comparable throughput to MAGMA-HO
and MAGMA-HE because it is partitioned into four sub-
accelerators with similar dataflow choices. In the IC bench-
mark, Polyform demonstrates more significant throughput en-
hancements, improving by factors of 2.94×, 1.76×, 1.30×,
and 1.52× compared to PREMA, Planaria, MAGMA-HO,
and MAGMA-HE, respectively. This improvement indicates
Polyform’s ability to handle various sizes of DNN models in
the IC benchmark.

D. Energy Analysis

Figure 5 illustrates that Polyform reduces the overall energy
consumption by 77.8%, 49.0%, 29.3%, and 34.3% on average
when compared to PREMA, Planaria, MAGMA-HO, and
MAGMA-HE, respectively. This reduction is attributed to the
increased throughput (resulting in a shorter makespan) and
reduced off-chip memory access.

E. Sensitivity Study for Different Number of Tasks

We investigate the impact of varying the number of Mixed
tasks from 5 to 20 on the effectiveness of Polyform. Figure 6(a)
demonstrates that Polyform improves the overall throughput by
up to 2.50×, 1.43×, 1.33×, and 1.39× compared to PREMA,
Planaria, MAGMA-HO, and MAGMA-HE, respectively. The
improvement becomes more significant with a larger number
of tasks. This observation highlights the crucial role of spatial
parallelism in effectively handling a large set of tasks.

F. Area Analysis

The area breakdown is shown in Figure 6(b). The over-
all accelerator requires an area of 39.89 mm2, where the
global buffers, NoC, MACs, local buffer, and control logic
consume 19.03 mm2, 2.43 mm2, 1.76 mm2, 15.43 mm2

and 1.24 mm2, respectively. Given its architectural simplicity,
our proposed flexible router achieves a 56% reduction in area
compared to a traditional 256-bit router.

V. CONCLUSION

In this paper, we propose an energy and performance-
efficient DNN accelerator in pursuit of multi-DNN execution.
The proposed accelerator employs two unique designs for the
exploitation of DNN parallelism. First, we propose a flexible
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of our proposed accelerator.

accelerator architecture that can be spatially partitioned into
multiple smaller accelerators called sub-accelerators. Each
sub-accelerator can be optimized in accordance with different
parallelization and data reuse strategies. Second, a GA-based
framework is proposed to simultaneously manage resource
allocation, dataflow selection, and task scheduling. Our pro-
posed design can achieve significant energy and throughput
improvements as compared to prior work.
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