
SCALE: A Structure-Centric Accelerator for
Message Passing Graph Neural Networks

Lingxiang Yin*, Sanjay Gandham*, Mingjie Lin, Hao Zheng‡
Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA

{lingxiang.yin, sanjay.gandham, milin, hao.zheng}@ucf.edu

Abstract—Message passing paradigm has been widely used
in developing complex Graph Neural Network (GNN) models,
allowing for concise representations of edge and vertex-wise
operations. Despite its pivotal role in theoretical advancement,
the respective expression of edge and vertex operations, along
with evolving GNN variants and datasets, has inevitably led
to enormous computational complexity due to heterogeneous
computation kernels. In particular, such inconsistent computation
characteristics present new challenges in leveraging intermediate
data reuse, ensuring both edge and vertex-wise workload balance,
and sustaining system scalability.

In this paper, we propose a structure-centric accelerator,
SCALE, that can support a variety of message passing GNN
models with improved parallelism, data reuse, and scalability.
The central idea is to find latent similarities among GNN
primitives such as shared dataflow structure, rather than strictly
adhering to heterogeneous model structure. This serves as a
hinge to homogenize inconsistencies in various GNN computation
kernels. To accomplish this concept, SCALE consists of three
unique designs, a novel systolic array-like architecture, a degree
and vertex-aware scheduling, and a coherent dataflow tailored
for fused graph and neural operations. The proposed systolic
array-like architecture can support varying dataflows such as all-
reduce, of distinct GNN operations improving parallelism, data
reuse, and throughput. The degree and vertex-aware scheduling
can remedy the workload imbalance encountered in vertex and
edge-wise operations. Moreover, the proposed dataflow can unify
the data movement of both graph and neural operators without
extra communication and storage overheads. Our simulation
results show that SCALE achieves 1.82× speedup and 38.9%
energy reduction on average over the state-of-the-art GNN
accelerators [1]–[4].

I. INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a promis-
ing model to comprehend complex graph-structured data,
showing satisfactory performance in various applications such
as social networks [5]–[7], recommendation systems [8]–[10],
and bioinformatics [11]–[14]. In light of recent theoretical ad-
vancements, GNN models now incorporate complex edge and
vertex-wise operations to capture nuanced graph structures and
semantics. Such complex operations are typically expressed
using the message passing paradigm in deep learning libraries
such as Deep Graph Library and Pytorch Geometric. Yet,
despite its importance, message passing GNN poses escalating
computational and communication challenges on the hardware
due to intricate vertex and edge-wise operations.

Even though significant efforts [15]–[21] have been de-
voted to facilitating Graph Convolutional Networks (GCN),

*Equal Contribution. ‡Corresponding Author.

Table I: Comparisons of SCALE with other state-of-the-art
accelerators.

Accelerator Message
Passing

Commu.
Latency

Unified
Dataflow

Data
Reuse

Workload Balance
Aggr. Update

AWB-GCN [2] ✗ Medium 1 Low 1 1

GCNAX [1] ✗ High 1 Medium 1 1

I-GCN [22] ✗ High 2 Medium 2 2

ReGNN [4] 3 Medium ✗ Medium ✗ ✓

FlowGNN [3] ✓ High ✗ Low ✗ ✓

SCALE ✓ Low ✓ High ✓ ✓
1: Optimized for sparse-dense matrix multiplications; 2: Optimized for dense-dense

matrix multiplications; 3: No edge embedding support.

they are inefficient in handling message passing GNNs with
explicit edge operations as shown in Table I. Specifically,
GCN computations can be simply accelerated in the form
of sparse-dense matrix multiplication (SpMM) and general
matrix multiplication (GEMM). Prior works, such as AWB-
GCN [2] and I-GCN [22], either relied on runtime workload
distribution or matrix preprocessing to overcome the sparsity
issue involved in SpMMs. GCNAX [1] utilized loop fusion
and reordering to optimize SpMM kernels, thus reducing
excessive off-chip memory access. However, emerging GNN
models like Graph Attention Networks (GAT) [23] involve
complex attention score calculation over edges represented by
sampled dense-dense matrix multiplication (SDDMM) [24].
Higher-Order Graph Convolutional Architectures [25] require
information aggregation from non-adjacent vertices. Conse-
quently, such intricate graph operations make it difficult to
expedite GNN computations through graph reordering and
SpMM optimizations.

To support message passing GNNs, FlowGNN [3] intro-
duced a dataflow architecture to support edge and vertex
operations in a pipeline fashion. These computation units are
connected by a complex interconnection network to withstand
erratic communication, leading to scalability concerns. Simi-
larly, ReGNN [4] presented a dynamic redundancy-eliminated
neighborhood message passing to improve graph data locality.
However, its parallelism is also restricted by separate graph
and neural operations with considerable communication over-
heads. More importantly, heterogeneous architectures emerge
as a key bottleneck hindering the data locality of intermediate
results and scalability.

Considering constantly evolving GNN models, we posit that
adhering to their model structure is the primary issue that lim-
its data locality and scalability, as each GNN operation exhibits
distinct computation and dataflow patterns. To this end, we
propose SCALE, a structure-centric accelerator that unifies the
computation via a shared dataflow. The key idea is to uncover

latent similarities among heterogeneous GNN kernels through
exploiting dataflow structure. Tailoring dedicated dataflows to
be consistent for both graph and neural operations enables
their execution using a single computation fabric, thereby
unifying the computation patterns. Consequently, it simplifies
the communication complexity, improving intermediate data
reuse, and system scalability.

The major contributions of this paper are as follows:
• SCALE Accelerator Design: The proposed SCALE

accelerator can efficiently parallelize graph and neu-
ral operations with a coherent dataflow, thus obviating
the communication complexity and storage overheads.
Specifically, SCALE introduces a novel systolic array-like
architecture to simultaneously fuse feature aggregation (in
the form of reduce operations) and vertex update opera-
tions to eliminate graph irregularity with much-improved
performance. In other words, our proposed architecture
repurposes conventional systolic array architecture for the
chained reduction and matrix multiplication with a coher-
ent data movement pattern, enabling intermediate data
reuse between heterogeneous operators with minimized
communication distance. The proposed architecture com-
promises a shift-register array to meet the increased data
bandwidth required by the fused operations, a novel
PE architecture to directly accommodate the dependency
between feature aggregation and vertex update, and a
flexible ring interconnect to provide adaptive dataflow for
both operations.

• Degree and Vertex-aware Scheduling: Unlike con-
ventional graph processing, GNN computations require
considerable execution time for both feature aggregation
and vertex update. As such, both degree and vertex
information should be considered for workload balance.
SCALE incorporates a degree and vertex-aware schedul-
ing policy, which can dynamically allocate equivalent
edge and vertex quantity to different processing units
while reforming the workload for message reduce and
vertex update. This ensures the workload balance for both
aggregation and update phases for GNNs.

• Flexible Dataflow for Fused Graph and Neural Opera-
tions: Given the dynamic variations in graph connectivity,
feature size, and weight matrix, it requires a flexible
dataflow to seamlessly orchestrate the data movement of
the graph and neural operations. We propose a unique
dataflow to fuse the inconsistent graph and neural opera-
tions to achieve unified data movement across computa-
tion units, optimizing the parallelism and data reuse.

We evaluate the proposed SCALE, and the evaluation result
shows that our design achieves 1.82× speedup and 38.9%
energy reduction on average over the state-of-the-art GNN
accelerators [1]–[4].

II. BACKGROUND AND MOTIVATION

A. Graph Neural Networks
Graph Neural Networks (GNNs) are a category of neural

networks developed to handle graph-structured data. This cat-

egory includes several variants, such as Graph Convolutional
Networks (GCNs) [26], Gated Graph Convolutional Networks
(G-GCN) [27], GraphSAGE [28], and Graph Isomorphism
Networks (GINs) [29]. Given the complex and diverse graph
operations, such as updating the edge and vertex embeddings,
GNN computation patterns cannot be simply formulated as
sparse-dense (SpMM) or general matrix (GEMM) multiplica-
tions. Instead, GNN models rely on a message passing scheme
to perform such complex operations. In essence, most GNN
models can likely be expressed using this message passing
approach [30]–[33].

Message Passing in GNNs: Message passing in GNNs is a
key mechanism to incorporate local neighborhood information
and is generally structured into two main stages: the aggrega-
tion and update steps. Given a graph G = (V,E), where V is
the set of vertices and E is the set of edges, the aggregation
step computes a representation for each vertex based on its
neighbors’ features:

mk
v = AGGREGATEk

(
{hk−1

u : u ∈ N(v)}
)

(1)

Here, mk
v is the aggregated message for vertex v at layer

k, N(v) represents the neighbors of v, and hk−1
u are the

features of node u from the previous layer. The update step
then integrates the aggregated message with its own features:

hk
v = UPDATEk

(
hk−1
v ,mk

v

)
(2)

These two stages form the core of message passing and
are foundational to various GNN models [34], [35]. The
aggregation phase workload (AGGREGATEk) is dependent on
the degree of each vertex, while the update phase workload
(UPDATEk) relies solely on the number of vertices.

B. Motivation

Despite recent efforts [2], [3], [36], [37], several challenges
remain unsolved in accelerating message passing GNNs, lim-
iting their parallelism, scalability, and data reuse. To fully
uncover such challenges, we conduct an initial study across
different message passing GNN models and graph datasets.

Structure-aware Workload Partitioning: Message passing
paradigm involves extensive edge and vertex-wise operations,
highly contingent on graph structure. Consequently, unlike
edge or vertex-centric graph partitioning [3], [36], [38], it
is imperative to ensure even distribution of edges and ver-
tices among processing elements respectively. Based on our
application profiling, as shown in Fig. 1(a), FlowGNN [3] and
PowerGraph [36] present 40-50% PE under-utilization of both
compute engines, in which only vertex or edge quantity is
considered at the workload scheduling.

Scalability Concern due to Heterogeneous Kernels: Mes-
sage passing GNN phases such as aggregation and update
involve operating on irregular graph data and regular computa-
tion on tensors respectively. Given their distinct characteristics,
architectures have to be tailored separately for each operation
phase. These compute engines are connected by either a multi-
stage or a crossbar network to handle the data communication
of intermediate data. Therefore, as the network scales, the

(a) (b) (c)
Figure 1: (a) Unbalanced workload distribution in prior scheduling policies, (b) execution time breakdown in the pipeline of
GNN execution, and (c) normalized size of various data types in sample GCN and GIN models.

communication latency increases. For example, in Benes net-
work [39], the hop count of each intermediate data is 2log2N .
However, the computation time for each intermediate result
remains constant regardless of network size. Conventional
architectures [3], [4], [40] typically employ pipelining to mask
communication overheads with the computation. However, it
remains difficult to efficiently overlap communication latency
with computation due to their disproportionate scaling [41].
Based on our study, we observed that the communication time
will not be overlapped when the PE size exceeds 128. This
will eventually increase the overall execution time by 2-3× as
shown in Fig. 1(b). Note that exposed communication refers
to the portion of the communication latency that hinders the
execution of the update phase.

Compromised Intermediate Data Reuse: In addition,
reusing intermediate data is critical in GNN acceleration as
illustrated in Fig. 1(c), as intermediate data is predominant
(approximately 50%) in overall GNN data including graph,
input, weight, and output. Theoretically, the intermediate data
reuse is proportional to graph data and feature size, whereas
graph data reuse is subject to mutually-shared nodes [4]. While
previous study [22] emphasized data reuse optimization in
SpMM kernels, it remains a significant challenge to exploit
intermediate data reuse in heterogeneous computation kernels
at the register level. This requires a strategic design from both
dataflow and architecture aspects.

III. PROPOSED ARCHITECTURE DESIGN

The key idea of SCALE is to identify a shared dataflow
among distinct message passing operations. As such, a co-
herent dataflow can be leveraged to fuse multiple operations,
enabling fine-grained parallelism and increased data reuse at
the register level. Given that all operations are performed
upon a shared graph structure, graph structure serves as the
cornerstone to unify dataflows of GNN operations.

Fig. 2 illustrates SCALE’s coherent dataflow for both
GNN phases. Unlike conventional dataflows in the systolic
array architectures, the proposed dataflow is similar to all-
reduce operation in collective communication, which consists
of ‘reduce-scatter’ and ‘all-gather’ operations [42]. SCALE
first reorganizes the irregular computation involved in ag-
gregating information from neighboring vertices during the
aggregation phase into a linear chain of reduce computations.
This enables the aggregation engine of SCALE to perform
aggregation by shifting data in the forward direction adhering
to a regular communication pattern, corresponding to the

Input Graph

PE
1

PE
0

PE
3

PE
2

0
1

2

Aggregation Phase

8
4

9

Update Phase
1
4
6
10 w1w2w3w0

Destination
Vertex

Source
Vertex

Edges

3

11

75

20 1

10

4 6

98

0 9
6

2 4
7

1 3
11

8 5
10

3
6

5

7
10

11

w0 w1 w2 w3

Edge Parallelism, Forward Direction

Vertex Parallelism, Backward Direction

Fused O
perator

1

4

6

10

Aggregated Features
Weight Filters

Aggr.
Engine

Update
Engine

Intra-PE
Comm.

Inter-PE
Comm.

Figure 2: The proposed edge and vertex parallelism in SCALE.

‘reduce-scatter’. The results of the aggregated vertices are then
directly processed by the update engines while communicating
in the backward direction, referring to the ‘all-gather’. For
example, vertices 0, 2, and 1 are loaded to PE0, PE1, and PE2
respectively. Vertex 0 will be forwarded to PE1 and aggregated
with Vertex 2, and the intermediate result will be forwarded to
PE2. Once the aggregation is completed at PE2, the aggregated
feature will be forwarded to the update engine within PE2.
The aggregation feature will be multiplied with distributed
weight elements (w0, w1, w2, and w3) via backward direction.
As such, all the intermediate results are exchanged and stored
at the register level, increasing the data reuse. Meanwhile, the
communication distance for each operation is one hop. SCALE
exploits the edge parallelism at the aggregation phase, where
multiple edge reduce operations are distributed and performed
in parallel. On the other hand, it parallelizes the vertex update
by distributing the weight matrix among processing units. Both
edge and vertex parallelism are unified in one architecture via
a coherent dataflow. As such, the aggregated features will be
forwarded for vertex update within each PE to enable operator
parallelism (e.g., aggregation and update).

A. Overall SCALE Architecture

Fig. 3(a) depicts the architecture of the proposed SCALE ac-
celerator. SCALE consists of the following main components:
a multi-bank global buffer, a task controller, data loaders, task
dispatchers, and a flexible processing element (PE) array. The
multi-bank global buffer is used to store the graph information
(vertex and edge) and the weight matrix. The task controller
schedules edge and vertex tasks and assigns them to the array
of task dispatch units. The task dispatch unit orchestrates the
data movement of their respective tasks from the global buffer
to the PE array using the data loader to forward the data to
the PE array. The PEs are connected by a flexible network,
which can be dynamically sized to multiple PE sub-arrays.
Each PE can support both message aggregation and vertex

Task

Dispatch

1

Task

Dispatch

3

Task

Dispatch

0

Task

Dispatch

2

Control SignalData Path Interconnect Link

 D
at

a

Lo

ad
er

 D
at

a

Lo

ad
er

 D
at

a

Lo

ad
er

 D
at

a

Lo

ad
er

Link Switch

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

O
ff-

ch
ip

 D
R

AM

Ta
sk

C

on
tro

lle
r

G
lo

ba
l B

uf
fe

r

D
at

a

Pr

ef
et

ch
er

(a) (b)

Aggregation Engine

Reg.

MUX

4

M
U

X

6 7

5

Reg.

M
U

X

Reg.

MUX

M
U

X

6 7
Reg.

M
U

X

MUX

MUX

Update Engine
Weight

Buffer

AR
B.

0

1

3

2
ARB.

Register File

6

6

7

7

D
EM

U
X

Reg. Reg.

Activation

Unit

Output

Buffer

Scalar

Buffer

Port # Description

Aggregated Features

From East PE

U
pd

at
e

En
gi

ne

0 Aggregated Features

To West PE

1

2 Updated Vertex From
South PE

3 Updated Vertex To

North PE/Global Buffer

A
gg

re
ga

tio
n

En
gi

ne 4 Partial Aggregated
Features From West PE

5 Partial Aggregated
Features To East PE

6 Vertex/Edge Feature
From West Register

7 Vertex/Edge Feature
To East Register

Figure 3: SCALE Microarchitecture: (a) Overall SCALE architecture, and (b) PE microarchitecture consisting of update and
aggregation engine.

update phases at the same time. We will detail the design of the
PE array to simultaneously support both message aggregation
and vertex update phases in the following.

B. SCALE PE Array Architecture
The proposed PE array is a systolic array-like architec-

ture, which simultaneously enables three types of parallelism,
namely edge (i.e., feature aggregation), vertex (i.e., vertex
update), and operator (i.e., the dependency between aggre-
gation and update) parallelism. Each row of the PE array
is interconnected in a ring-like topology. The wrap-up link
consists of a set of link switches (i.e., transistors) to disable
the signal propagation between segmented short links. By
doing so, a long ring can be divided into several shorter
rings. These small rings can be configured to handle various
graph mapping and dataflow. The forward ring direction within
this structure facilitates the reduce operation required for
message aggregation. On the other hand, the ring’s backward
direction supports the vertex update. Any operator dependency
is managed within each PE once the feature aggregations
are completed. Consequently, the proposed PE array can
achieve high parallelism without incurring extra storage or
communication overheads.

However, several challenges arise when designing the pro-
posed PE due to the irregular nature of the graph structure,
coupled with varying degree numbers. Even though EnGN [15]
attempts to perform ring-based reduce, it requires distributing
the vertex features over the full length of the PE array be-
cause of the vertex-based mapping. Additionally, conventional
designs often require aggregated features to be sent to global
buffers or a centralized update engine. To overcome these
limitations, we present two distinctive designs, aggregation
and update engines within each PE, as illustrated in Fig. 3(b).

The aggregation engine is equipped with a dedicated
multiply-and-accumulate (MAC) unit, along with a register
array. The adder, multiplier, and scalar buffer within this
structure are configurable, thereby enabling various aggre-
gation operations essential for GNN models. Not only can
each aggregation engine transmit the aggregated feature to an
adjacent PE, but it can also forward them to the update engine

housed within the same PE. In addition, each aggregation
engine has a shift register array, comprising an array of double
buffers. It has the capacity either to provide feature or weight
data to MAC units or to forward the information to adjacent
register arrays. The function of the update engine is to execute
vector-vector multiplication, and it includes a weight buffer, an
output buffer, and an activation unit for non-linear functions.

1) Aggregation Phase: The aggregation phase either lever-
ages the edge or feature parallelism to perform multiple reduce
operations simultaneously. To support this idea, the difficulty
is two-fold: (1) The vertex features need to be distributed to
the PE array, and each feature should be aggregated with its
associated reduce operation; (2) the reduce operations increase
data bandwidth requirements, where multiple features result in
just one aggregated feature. To solve the mentioned challenges,
we operate on the individual feature of the vertices rather than
the entire feature vector reducing the bandwidth requirement
across the aggregating PEs. Then, we utilize a task dispatcher
to distribute the feature workload to the PEs and a shift register
array with double buffers, storing feature values for multiple
vertices and edges, to overlap the latency of feature distribution
with feature aggregation.

For example, as shown in Fig. 4(a), four reduce operations
will be performed on two PEs. Each reduce operation includes
various vertices, in which source vertices send the features to
the destination vertices (a, b, c, and d). These feature aggre-
gations will be performed on the PE ring hop by hop. We
first map features of each reduce operation to the aggregation
engines. As such, the shift registers at each PE will receive
two features. For example, features (a00 and c01) are loaded to
the shift registers at PE0. After that, the register array pops
the features up to the MAC units in the aggregation unit. Each
aggregation unit will perform the reduce operation, receiving
one operand from its upstream PE and another from its local
register array. For example, a00 is popped to the MAC units
at cycle 1, and it will be forwarded to PE1 and added with
a01 at the next cycle. The accumulated result, m0

a, will be
further forwarded to the next PE until it finishes aggregating
with all the source vertices. The final accumulated result

R
eg

. A
rra

y
0

(a) An Example of Subgraph Workloads and Annotations

a

a2

a1a0
Subgraph 1

b b1b0
Subgraph 2

c

c2

c1c0

Destination VertexSource Vertex

Cycle 0

(b) Ring-based Reduce Aggregation

PE
0

- A
gg

r.
En

g.

c10

c3

Subgraph 3
a00

Note Meaning

Intermediate aggregated
feature for feature y of
vertex x

mx
y

Mx
y Final aggregated feature

for feature y of vertex x

xy Feature y of Vertex x

PE
1

- A
gg

r.
En

g.

0c0

0a1

PE
0

- A
gg

r.
En

g.

c1
0

PE
1

- A
gg

r.
En

g.

0a1

a0
0 0c0

PE
0

- A
gg

r.
En

g.

PE
1

- A
gg

r.
En

g.

c1
00c0 a00 0a1

a2
0 c2

0

a0c3
0

PE
0

- A
gg

r.
En

g.

PE
1

- A
gg

r.
En

g.

0c

PE
0

- A
gg

r.
En

g.

d0
0

PE
1

- A
gg

r.
En

g.

0b1

0c

PE
0

- A
gg

r.
En

g.

PE
1

- A
gg

r.
En

g.

PE
0

- A
gg

r.
En

g.

b0

PE
1

- A
gg

r.
En

g.

0dd0
0 b00 0b1

b0 d0

mb
0ma

0 a 0mc
0 c3

0

b0
0

b0
0 mc

0

PE
0

- A
gg

r.
En

g.

a2
0

PE
1

- A
gg

r.
En

g.

0a

0c2ma
0 mc

0

c3
0

To Upd. Eng. Ma
0 To Upd. Eng. Mb

0 To Upd. Eng. Md
0

Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

dd0
Subgraph 4

d0
0

To Upd. Eng. Mc
0

R
eg

. A
rra

y
0

R
eg

. A
rra

y
0

R
eg

. A
rra

y
0

R
eg

. A
rra

y
1

R
eg

. A
rra

y
1

R
eg

. A
rra

y
0

R
eg

. A
rra

y
0

R
eg

. A
rra

y
1

R
eg

. A
rra

y
1

R
eg

. A
rra

y
1

R
eg

. A
rra

y
1

R
eg

. A
rra

y
1

R
eg

. A
rra

y
1

R
eg

. A
rra

y
0

R
eg

. A
rra

y
0

d0
0 0b1

Figure 4: Aggregation phase example in the proposed SCALE architecture with a 1× 2 PE ring.

1
bd0b0c3

Dispatch
Queues

b1cac2

Circular Shift
Register

a1

c1
a2

c1

a1 Reg.

Reg.M
U
X

M
U
X

Task
Dispatcher

Vertex

Feature
Reader

Data
Loader

Task List PE 0 PE 1

b0
0

c3
0

a2
0

c1
0

a0
0

d0
0

c0

a0

c2
0

a1
0

b1
0

c0
0

t =

Dispatch
Controller

task 0 task 1Control SignalGlobal Buffer Access

0

Task
ID

a0

Task List

b0a b1 b

c0 d0c dc3c2

a2a1

c1

0

1

2

3

4

5

6

d

d0b0

Figure 5: An example of task dispatcher feeding vertex fea-
tures to the PE array.
corresponding to vertex a, M0

a , will be sent to the update
engine at PE1 during cycle 4. As such, the aggregated features
can be directly sent to the next operation without incurring data
movement across the memory hierarchy. This eliminates the
communication complexity and memory operations. Note that
using a ring interconnect between the PEs allows arbitrary-
length subgraphs to be mapped onto the PE ring as large
workloads (vertices with high degrees) can wrap around the
PE ring multiple times. Fig. 4(b) shows that subgraphs 3 with
four aggregations can be mapped to a PE ring of size 2.

Note that the SCALE microarchitecture supports a wider
variety of aggregation functions employed by GNN architec-
tures. A key property of the aggregation functions is permu-
tation invariance [29]. This indicates that the ordering of the
input features does not affect the output. Reduction operation
is often associative and commutative, ensuring permutation
invariance over the inputs [43]. By representing aggregation
functions as a reduction operation over the features, SCALE
ensures support for emerging GNN models.

Task Dispatcher: Fig. 5 illustrates the operation of a task
dispatcher. The task dispatcher iterates over every source and
destination vertex of all tasks in the task list and loads a portion
of their respective features with the data loader. These features
are sent through a circular shift register, similar to a barrel
shifter, to reorder the vertex features. Note that the circular
shift register is not the same as the shift register in the register
array. The circular shift register is used to reorder the vertices,
whereas the shift registers in the register array are used to
supply the data to the PEs. For example, vertex features a01
and c01 are read from the global buffer by the data loader. This
pair of features is sent through the circular shift register where

cycle 0

KJ

Ta
sk

 D
is

pa
tc

h

NM

M N

Register array 1 loads data

from task dispatch.

To MAC unit

To MAC unit

a00 c00

a10c10

c2
0

a0

c2
0

a0

Ta
sk

 D
is

pa
tc

h

cycle 1

KJ

Ta
sk

 D
is

pa
tc

h

NM

M N

To MAC unit

To MAC unit

c10 a10

a2
0

c3
0

a2
0

c3
0

Ta
sk

 D
is

pa
tc

h

c20

a0

KJ NM

M N

To MAC unit

c40

a1
0

Ta
sk

 D
is

pa
tc

h

KJ NM

M N

To MAC unit

b00

c1
0

Ta
sk

 D
is

pa
tc

h

c4
0

a1
0

O
ve

rla
p

Ta
sk

 D
is

pa
tc

h

To MAC unit

a20 c20

a0c3
0

c4
0

a1

0

Ta
sk

 D
is

pa
tc

h

To MAC unit

c30 a0b0
0

c1
0

Register array 0 sends data

to the MAC unit.

cycle 2 cycle 3

Register array 0 loads data

from task dispatch.

Register array 1 sends data

to the MAC unit.

PE0 PE1 PE0 PE1 PE0 PE1 PE0 PE1

PE0 PE1 PE0 PE1 PE0 PE1 PE0 PE1

Figure 6: An example of overlapped task dispatch and aggre-
gation operations with double buffered register array.

it is shifted i%Tn ring times where i is the index in the task
list and Tn ring is the number of tasks assigned to a PE ring.
In this example, i is 1, and Tn ring is 2, leading to a shift
of 1. The reordered features are then pushed into the dispatch
queues to be sent to the register array.

Shift Register Array: Naturally, the fused graph and neural
operations, when performed simultaneously, increase the data
bandwidth requirements. To overcome this problem, we pro-
pose a double buffer design in the shift register array. Fig. 6
illustrates the shift register array architecture, in which the
register arrays of two PEs are interconnected. Specifically, the
proposed shift register array is arranged in a mesh-like network
and supports both horizontal and vertical data transfer. The
features are propagated horizontally to fill up local registers.
Once the features are fully loaded into PEs, they are delivered
to the MAC units in the aggregation engine vertically. For
example, as shown in Fig. 6, the task dispatcher has already
loaded the features (ai and ci) associated with two reduce
operations into a 2×2 register array. At cycle 0, features a00 and
c00 are supplied to the MAC units. Afterward, features c01 and
a01 will be propagated to the MAC units. In the meantime, the
register array 1 starts preloading the feature data corresponding
to the next set of computations. For example, at cycle 0,
features c02 and a0 are loaded to the first column of the register
array 1, and all of them will be shifted horizontally at the

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer

w1
0 w1

1 w1
2 w1

3w0
0 w0

1 w0
2 w0

3

PE0

Weight
Buffer

Input
Buffer

Output
Buffer PE3

Weight
Buffer

Input
Buffer

Output
Buffer PE2

w3
0 w3

1 w3
2 w3

3w2
0 w2

1 w2
2 w2

3

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer PE0

Weight
Buffer

Input
Buffer

Output
Buffer PE3

Weight
Buffer

Input
Buffer

Output
Buffer PE2

C
yc

le
 0

Weight MatrixAggregated Features Updated Features

w0
0

w0
2

w0
3

w1
0

w1
1

w1
2

w1
3

w0
1

w2
0

w2
1

w2
2

w2
3

w30

w3
1

w3
2

w3
3

Vertex a

Vertex b

Vertex c

Vertex d

Vertex ua

Vertex ub

Vertex uc

Vertex ud

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer PE0

Weight
Buffer

Input
Buffer

Output
Buffer PE3

Weight
Buffer

Input
Buffer

Output
Buffer PE2

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer PE0

Weight
Buffer

Input
Buffer

Output
Buffer PE3

Weight
Buffer

Input
Buffer

Output
Buffer PE2

w1
0 w1

1 w1
2 w1

3 w3
0 w3

1 w3
2 w3

3w2
0 w2

1 w2
2 w2

3

w1
0 w1

1 w1
2 w1

3 w3
0 w3

1 w3
2 w3

3w2
0 w2

1 w2
2 w2

3

w1
0 w1

1 w1
2 w1

3 w3
0 w3

1 w3
2 w3

3w2
0 w2

1 w2
2 w2

3

Ma
0 Ma

1 Ma
2 Ma

3

Mb
0 Mb

1 Mb
2 Mb

3

Mc
0 Mc

1 Mc
2 Mc

3

Md
0 Md

1 Md
2 Md

3

ua
0 ua

1 ua
2 ua

3

ub
0 ub

1 ub
2 ub

3

uc
0 uc

1 uc
2 uc

3

ud
0 ud

1 ud
2 ud

3

Ma
0 Ma

1 Ma
2 Ma

3

w0
0 w0

1 w0
2 w0

3

w0
0 w0

1 w0
2 w0

3

w0
0 w0

1 w0
2 w0

3

Ma
0 Ma

1 Ma
2 Ma

3

Ma
0 Ma

1 Ma
2 Ma

3

Ma
0 Ma

1 Ma
2 Ma

3

Mb
0 Mb

1 Mb
2 Mb

3

Mb
0 Mb

1 Mb
2 Mb

3

Mb
0 Mb

1 Mb
2 Mb

3

Mb
0 Mb

1 Mb
2 Mb

3

Mc
0 Mc

1 Mc
2 Mc

3

Mc
0 Mc

1 Mc
2 Mc

3

Mc
0 Mc

1 Mc
2 Mc

3

Mc
0 Mc

1 Mc
2 Mc

3

Md
0 Md

1 Md
2 Md

3

Md
0 Md

1 Md
2 Md

3

Md
0 Md

1 Md
2 Md

3

Md
0 Md

1 Md
2 Md

3

ua
0

ua
1

ua
2

ua
3ub

0

ub
1

ub
2

ub
3uc

0

uc
1

uc
2

uc
3

ud
3

ud
2

ud
1

ud
0

C
yc

le
 1

C
yc

le
 2

C
yc

le
 3

Figure 7: Vertex update example in SCALE architecture with
a 1× 4 PE ring.
next cycle. To maintain the full utilization of the PE ring, the
register array size should be set to at least N when generalizing
the register array size to an N × N array. It is important to
note that the task dispatcher is only connected to the PEs in
the PE array’s leftmost column. To move data across the array,
the dispatcher starts a shift operation while simultaneously
pushing data into the register array.

2) Update Phase: The vertex update occurs once the accu-
mulation of a vertex’s features is complete. The fundamental
computations of the vertex update are matrix-vector multipli-
cations. In this process, feature vectors are multiplied with
a weight matrix. Since the weight matrix is identical and
shared across feature vectors, a weight-stationary dataflow
is employed for the update phase. Specifically, we evenly
distribute the computation of the update phase across a set
of PEs by partitioning the weight matrix into equal chunks,
where each PE holds one chunk. The weight matrix mapping
is determined by matrix dimension and ring size, which
will be handled by the task controller. This approach helps
eliminate data duplication, enhancing the effective memory
capacity. The weight matrix is pre-loaded into the PE array,
while the aggregated feature is passed across PEs to facilitate
computation with each weight partition. The data movement
for vertex updates is orchestrated in a direction opposite to
that of aggregation, fully utilizing both directions of the ring.

For example, as shown in Fig. 7, the feature vectors (a, b, c,
and d) are received from the aggregation engine and are
stored in the update engine. Each feature vector includes four
elements (M0

a , M1
a , M2

a , and M3
a) and needs to be multiplied

by the weight matrix. As the weight matrix is partitioned
and distributed into the PE array, the weight vectors will be
temporally stored at each PE for vertex update. The feature

vector will move along the PE array to be multiplied with
each weight vector. For example, the aggregated features (M0

a ,
M1

a , M2
a , and M3

a) will be multiplied by a weight vector
(w0

0 , w1
0 , w2

0 , and w3
0). The results (uj

i , i ∈ {a, b, c, d} and
j ∈ {0, 1, 2, 3}) will be eventually sent back to global buffers
through the vertical links in the PE arrays. The vertical links
connect each PE with the corresponding PE in the row above
it. As such, only the PEs of the topmost row are connected
to the global buffer to write the updated features back to
the global buffer. While the PEs of the other rows perform
shift operations to send the updated feature to the row above
it. This ensures design scalability as not all PEs need a
direct connection to the global buffer. The aggregated feature
vectors will be forwarded to the next hop. We note that each
aggregated feature has to traverse N − 1 hops (N is the ring
size) to accomplish the update operation.

3) Workload Imbalance and Ring Size: The efficiency of
the proposed architecture is clearly influenced by the vari-
ability in vertex degree and weight matrix dimension size.
Specifically, the edge parallelism in reduce operations is linked
to the vertex degree since the number of features corresponds
to the vertex degree. With a fixed PE array size, accommo-
dating varying sizes of reduce operations becomes a complex
task. Additionally, the size of the weight matrix determines
the spatial parallelism, where each weight vector is divided
among multiple PEs. These factors collectively contribute to
the challenges of fusing the aggregation and update phases
into a cohesive dataflow. Such integration demands meticulous
design in terms of workload scheduling and PE array size,
which will be discussed in the following sections.

IV. PROPOSED SCHEDULING POLICY

As mentioned, the message passing GNNs follows a neigh-
borhood aggregation scheme, where the feature vector of a ver-
tex is computed by recursively aggregating and transforming
feature vectors of its neighboring vertices [29]. This indicates
that the computation associated with the aggregation phase
depends on the number of neighboring vertices (represented
by the edges of a vertex). Further, the update phases trans-
form the feature representation of each vertex, indicating that
the workload is proportional to the number of vertices. In
distributing the workload across the proposed PE array, the
ideal scenario would involve an even task allocation of edge
and vertex to avoid workload imbalance at different stages.
However, the varying degrees of vertices in power-law graphs
pose a complicated challenge to the workload distribution.

In the context of workload scheduling, prior work typically
falls into one of two categories: vertex-aware scheduling [44]–
[46] and degree-aware scheduling [15], [47], [48]. Vertex-
aware scheduling allocates an equal number of vertices to
computing units. To illustrate this, we consider the example
graph shown in Fig. 8(a). Vertex-aware partitioning forms
four tasks, each containing an equal number of vertices but
with differing degrees, as depicted in Fig. 8(b) with each
task assigned to one PE. While this method balances the
workload during the update phase, it leads to an unbalanced

(a) An Example Graph and

Its Edge List Representation (d) Degree and Vertex (DV)-aware Scheduling

Balance Update Workload between Task Groups

Task Group

of

 E
dg

es

a,
e

b,
f

c,
g

0

4

8

d,
h

0 1 2 3 #
of

 V
er

tic
es

a,
e

b,
f

c,
g

0

2

4

d,
h

0 1 2 3

Vertex

ID

8

3

(c) Degree-aware Scheduling

of

 E
dg

es

Task ID

a,
b,

h

c,
d,

e

f0

4

8

g

0 1 2 3 #
of

 V
er

tic
es

Task ID

a,
b,

h
c,

d,
e

f0

2

4

g

0 1 2 3

Balanced Edges

of

 E
dg

es

Task ID

a,
b,

h

f c,
d,

e

0

4

8

g

0 1 2 3 #
of

 V
er

tic
es

Task ID

a,
b,

h

f c,
d,

e

0

2

4

g

0 1 2 3

1 b(2), f(6)
2 c(2), g(6)

Task ID Vertex ID (Edges #)
0 a(3), e(2)

3 d(2), h(1)

1 c(2), d(2), e(2)
2 f(6)

Task ID Vertex ID (Edges #)
0 a(3), b(2)

3 g(6), h(1)

1 f(6)
2 c(2), d(2), e(2)

Task ID Vertex ID (Edges #)
0 a(3), b(2), h(1)

3 g(6)

1 c(2), d(2), e(2)
2 f(6)

Task ID Vertex ID (Edges #)
0 a(3), b(2), h(1)

3 g(6)

Task List

(b) Vertex-aware Scheduling

Task List

Imbalanced Edges

5

Balanced Vertices

4 4

Task List

Task List

6 6

Balanced Edges
 Balanced Vertices
4 4

Imbalanced Vertices

6 28

6 6

6 6 6 6

b (f,b), (g,b)
c (f,c), (f,c)

Vertex ID Edge Lists (Vsrc,Vdst)
a (e,a), (f,a), (g,a),

d (f,d), (f,d)

f (a,f), (b,f), (c,f), (d,f),
(e,f), (g,f)

g (a,g), (b,g), (c,g), (d,g),

(f,g), (h,g)

e (a,e),(f,e)

h (g,h)

of

 E
dg

es

Task ID

a,
b

c,
d,

e

f0

4

8

g,
h

0 1 2 3 #
of

 V
er

tic
es

Task ID

a,
b

c,
d,

e

f0

2

4

g,
h

0 1 2 3

Balanced Edges
 Imbalanced Vertices

66 5 37

5

Task ID Task ID

a
g

b
f

dc
h

e
Reorder

1

2

Figure 8: Comparisons of different scheduling policies when assigning four tasks to a 2×2 PE array, and each task is assigned
to the corresponding same PE ID. PE 0 and 1 form one ring, and PE 2 and 3 form the other ring. (a) an example graph, (b)
vertex-aware scheduling, (c) degree-aware scheduling, and (d) our proposed degree and vertex-aware scheduling.

load in the aggregation phase, resulting in unbalanced PE uti-
lization. However, degree-aware scheduling organizes vertices
into tasks in such a way that the total degree of the vertices
within each task is balanced. Fig. 8(c) provides an example
of degree-aware scheduling, with four tasks created to have
an equal number of edges. Although this approach ensures
balance during the aggregation phase, it may create imbalances
during the update phase due to the varying numbers of vertices
in each task, which leads to unbalanced PE utilization.

A. Degree and Vertex-aware Scheduling
Finding a balance between the number of edges and vertices

can be particularly challenging, as graph data often exhibit
high irregularities. To tackle this challenge, we introduce a
degree and vertex-aware task scheduling algorithm, in which a
greedy heuristic is proposed for this bin-packing problem [49].
The process begins with degree-aware scheduling to create
edge-balanced tasks. These tasks are then combined into
equally distributed task groups using a modified vertex-aware
scheduling approach. This two-step method ensures balanced
edge and vertex workloads across all task groups.

Algorithm 1 outlines the pseudo-code for the proposed task
scheduling method, which consists of two main steps. In the
first phase, our goal is to organize vertices into tasks that are
balanced in terms of edges. We approach this as a modified
version of the bin-packing problem, where each “bin” or task
has a size equivalent to the number of edges in that task.
Unlike the traditional bin-packing problem, which seeks to
minimize the number of bins, our version fixes the number
of bins to the maximum number of tasks the hardware can
handle, a limit set by the register array size. As outlined in
lines 17-30 of the algorithm, we apply the first-fit heuristic, a
common approach used for runtime bin packing. For SCALE,
we set the number of tasks, Tn, and number of task groups,
Gn, to be equal to the number of PEs and rings, respectively.

The second phase involves grouping these edge-balanced
tasks into task groups, ensuring that the number of vertices
within each group is balanced. It’s important to note that
the number of task groups is constrained by the number of
available rings. To achieve the balance, we first sort the tasks
according to the number of vertices in each task, as indicated

Algorithm 1: Pseudocode for degree and vertex-aware
scheduling

Input : Graph: G = (V,E); Number of Tasks: Tn; Number
of Task Groups: Gn

Output: Workload balanced Task Groups: G
1 Function Hierarchical Scheduling(G, Task Groups)
2 // Create Edge-Balanced Tasks
3 Task List = First F it(G, Tn);
4 Sorted Task List = Sort(Task List);
5 // Initializing Task Groups
6 Task Groups = [];
7 for i in 0 → Gn do
8 Task Groups.append(new Task Group());
9 end

10 // Assign Tasks to Task Groups
11 for Task num in T n do
12 Task = Sorted Task List[Task num];
13 Task Group = Task Groups[Task num%Gn];
14 Place Task in Task Group;
15 end
16 return Task Groups;
17 Function First Fit(G, Tn)
18 // Initializing Tasks
19 Tasks = [];
20 for i in 0 →Tn do
21 Tasks.append(new Task());
22 end
23 // Assign Vertices to Tasks
24 for V ertex V in Graph G do
25 for T in Tasks do
26 if T.edges+ V.edges ≤ T.target edges then
27 Place V in T ;
28 end
29 end
30 return Tasks;

in line 4. We then use a simple modulo operation in line 13
to identify the index for the task group and place the task
there. This method allows us to pair tasks with high vertex
workloads with those having low vertex workloads, resulting
in task groups that have balanced vertex workloads.

Fig. 8(d) illustrates the degree and vertex-aware scheduling
for a 2× 2 PE array. We create four tasks (Task 0 - 3), each
containing a similar number of edges (i.e., 6). Take Task 0 as
an example; it includes 6 edges from three vertices (vertex a,

b, and h). These edges represent the reduce operations to be
performed at each PE during the aggregation phase. We further
combine the tasks into pairs, referred to as “task groups”. Each
group of tasks is assigned to one PE ring. For instance, Task
0 and Task 1 are grouped together as group 0, which has
four vertices (vertex a, b, h, and f). This number represents
the vertex updates for the group. With two PE rings, we form
two task groups, ensuring that both the aggregation and update
phases have a similar workload in both rings. It’s worth noting
that Task 0 includes three small-degree vertices and produces
three aggregated feature vectors. Meanwhile, Task 1 includes
a large-degree vertex and produces one aggregated feature.
While the edge and vertex workloads among the task groups
are balanced, there may be some vertex imbalance within a
task group due to the greedy policy. Our architecture and
mapping strategies, however, can tolerate this imbalance. As
the weight matrix is distributed across PEs and the aggregated
vertex features circulate through all PEs in a ring during the
update phase, it ultimately equalizes the workload among PEs.

Following Algorithm 1, we implement the proposed
scheduling algorithm in hardware allowing SCALE to sched-
ule workloads during runtime. Task scheduling involves cre-
ating workloads and writing them to the task lists of each
task dispatcher unit. To vary the scheduling latency, the task
scheduler creates tasks over a subset of the graph vertices
defined by batch size B. To minimize task scheduling over-
heads, we decouple the task scheduling and execution by using
a double-buffered task list in the task dispatcher, allowing the
task controller to schedule new tasks while the previously
scheduled tasks are being executed. This allows SCALE to
overlap the task scheduling latency with the task execution. By
employing such a runtime mechanism, we avoid preprocessing
the graph data. To hide the task scheduling latency with
the task execution, SCALE uses a performance model, as
described in IV-B, to estimate their latency and restricts the
batch size parameter, B to ensure that the task scheduling does
not hinder task execution.

B. Performance Model

The batch size, B, indicates the number of vertices operated
by the task scheduler to allocate tasks during one pipeline
phase. SCALE selects a suitable value for B such that the
task scheduling does not hinder the first pipeline stage of task
execution. Specifically, the task scheduling latency, tts must
be less than the aggregation latency, tagg of the tasks. SCALE
implements an analytical model of task scheduling and task
aggregation to determine their respective execution time for a
given subgraph with an average degree of Davg .

The task scheduling latency, tts, from Algorithm 1 can be
written as the sum of time to create tasks and task groups.
Operations involved in creating tasks, as indicated by the
nested for-loops in Algorithm 1 (lines 24-29), require, on
average, B × Log(Tn) on-chip memory access. Task group
creation, as indicated by sorting tasks and a for loop in lines
4-15, takes (Tn × Log(Tn) + Tn) on-chip memory accesses.
Thus the task scheduling latency can be written as

tts = ((B + Tn)× Log(Tn) + Tn)× tocm

Here, tocm is the access latency for on-chip memory. Sim-
ilarly, the aggregation of a task involves the PEs performing
B × Davg reduce operation and inter-PE communication for
each feature. Moreover, the same task list can be reused to
perform the computation associated with Fn features of the
vertex. Since these reduce operations are performed in parallel
by Tn PE, the task scheduling latency can be written as

tagg =
B ×Davg

Tn
× (treduce + tcomm)× Fn

Here, treduce and tcomm are the latency to perform a reduce
operation and inter-PE communication, respectively. If the tts
is larger than tagg , the aggregation engines of the PE will
remain idle, leading to resource underutilization. Therefore, for
a given accelerator configuration, SCALE chooses the batch
size B carefully such that tts < tagg . The sensitivity study is
provided in Section VII-F.

V. PROPOSED DATAFLOW AND MAPPING

Both dataflow and mapping choices affect the performance
by exploiting the temporal and spatial data locality via loop
interchanging and spatial parallelism [50]–[52]. The weight
matrix is of a relatively lower dimensionality compared to
CNNs. Therefore, conventional CNN dataflow and mapping
methods have limited applicability to message passing-based
GNN acceleration.

In this work, the principal objective of the mapping strategy
is to parallelize both feature aggregation and vertex update
in a coherent dataflow. To attain this, the proposed flexible
ring plays a critical role in achieving spatial parallelism.
For instance, the weight matrix must be distributed across
different PEs within the same PE ring, thereby mitigating
data duplication and resource under-utilization. However, the
dimensionality of the weight matrix differs among datasets.
In the update phase of the GCN’s second layer on the Cora
dataset, a weight matrix of dimension 16×7 is utilized, while
for Nell, the dimensions are 64×168. This necessitates a ring
size adaptable to diverse matrix dimensions. For example, if
the ring size Sring is small, then the sum of weight buffers
Bweight in the ring may be smaller than the entire weight
matrix W . This would incur off-chip memory accesses to load
portions corresponding to the weight matrix that is not present
in the weight buffers. On the other hand, employing a ring size
Sring larger than the total available computations in the update
phase would reduce the PE utilization rate. This is caused by
certain update engines being idle due to the lack of available
computations. Formally, we show the optimal range of ring
size as

Sring ∈ [⌈ W

Bweight
⌉, Rweight × Cweight], Sring ∈ Z+ (3)

where Rweight and Cweight are the row and column dimen-
sions of the weight matrix, respectively.

Upon determining the ring size, the flexible PE array will
be configured accordingly. As depicted in Fig. 9(a), if the
ring size is set to 2, a row of the array is configured into

(a)

Aggregated Features
Weight Matrix

Updated Features

Ma
0 Ma1 Ma2 Ma3

Mb0 Mb1 Mb2 Mb3

Mc0 Mc
1 Mc

2 Mc
3

Md
0 Md

1 Md
2 Md

3

w0
0 ua

0

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer PE0

w0
1

w0
2

w0
3

w1
0

w1
1

w1
2

w1
3

ub
0

uc
0

ud
0

ua
1

ub
1

uc
1

ud
1

ua
1

Mb0 Mb1 Mb2 Mb3 Ma
0 Ma

1 Ma
2 Ma

3

w0
0 w0

1 w0
2 w0

3 w1
0 w1

1 w1
2 w1

3

ub
1

(b)

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer PE0

C
yc

le
 0

Ma
0 Ma

1 Ma
2 Ma

3

w0
0 w0

1 w0
2 w0

3

ua
0 ub

0

Mb0 Mb1 Mb2 Mb3

w1
1 w1

2 w1
3w1

0

S0 S1 S2

S3 S4 S5

S6 S7 S8

S9 S10 S11

PE0

PE11

PE1 PE2 PE3

PE4 PE5 PE6 PE7

PE8 PE9 PE10 PE11

PE12 PE13 PE14 PE15 C
yc

le
 1

Figure 9: An example of the proposed ring configurations in
which PE ring size is 2. (a) link switch configuration and (b)
vertex update workloads on a 1× 2 PE ring.
two PE rings, resulting in the formation of eight rings to
facilitate the concurrent execution of feature aggregation and
vertex update. To illustrate this, Fig. 9(b) shows aggregated
feature vectors, such as M0

a , M1
a , M2

a , and M3
a , are distributed

among PEs. In parallel, each column of the weight matrix,
like w0

0 , w1
0 , w2

0 , and w3
0 , is also distributed to PEs by the

task controller. The aggregated feature vectors only need to
pass through two PEs, where they are then multiplied by each
corresponding weight partition. The resulting products, such
as u0

a, u0
b , u1

b , and u1
a, can be directly written back to the

global buffer. If an outer product were chosen, it would require
additional buffers at each PE to hold the intermediate data.
This method would cause the data movement to be inconsistent
with the aggregation phase and would also introduce additional
computations to accumulate all the partial results.

Once the optimal ring size is determined, the PE array
will be configured. As the size of the ring is determined
by the dimension of the weight matrix used in the update
phase of each layer, we reconfigure the rings between the
execution of layers. Note that GNNs have fewer layers than
other neural networks (e.g., CNN), so the reconfiguration
overheads, involving simple switch toggling, are negligible
even if SCALE reconfigures the ring size for each layer.

VI. EXPERIMENTAL SETUP

We implemented SCALE using a validated cycle-accurate
C++ simulator to model the behavior of the hardware. We in-
tegrate our simulator with Ramulator [53] configured as High-
bandwidth memory (HBM) with a bandwidth of 256 GB/s to
model the off-chip storage. We used single-precision floating
point datatype according to IEEE 754 for our evaluation.
We evaluated the performance of SCALE using three citation
graphs (Cora, CiteSeer, and PubMed) [54], one knowledge
graph (Nell) [55], and one large post graph (Reddit) [28]. The
detailed size and length of features in different layers of data
sets are summarised in Table II. Additionally, we used the most
popular representative GNN models: GCN [26], Gated-GCN
(G-GCN) [27], GraphSage-Pool (GS-PL) [28], and GIN [29].
The programming model that we used is similar to Deep Graph
Library (DGL) and PyTorch Geometric.

Table II: Structure of the Graph Datasets for the 2-layer GNN.

Datasets Vertices Edges Average Feature LengthDegree
Cora 2,708 10,556 3.9 1,433 - 16 - 7

CiteSeer 3,327 9,104 2.7 3,703 - 16 - 6
PubMed 19,717 88,648 4.5 500 - 16 - 3

Nell 65,755 251,550 3.8 61,278 - 64 - 210
Reddit 232,965 114,615,892 492 602 - 64 - 41

CAD Tools and Methodology: To estimate the power, area,
and timing characteristics of SCALE as an ASIC accelerator,
we implemented it using Verilog. We synthesized it using
Synopsys Design Compiler with the TSMC 32 nm standard
library to learn its timing characteristics that we used in our
simulator validating the accuracy of our model. We set the
clock frequency at 1GHz. We performed RTL simulations to
generate the waveform activity file to observe the switching
activity of the logic gates. Next, we used Synopsys PrimeTime
PX with the waveform activity file to measure the dynamic
and static power consumption of SCALE. For the area and
power of on-chip buffers, we employed Cacti 6.0 with 32 nm
technology [56].

Baseline Platforms: To evaluate the efficiency and scal-
ability of SCALE, we compare it with prior state-of-the-
art GNN accelerators such as ReGNN [4], FlowGNN [3],
AWB-GCN [2], and GCNAX [1]. We model the baseline
architectures using our C++ simulator employing their re-
spective optimizations. For a fair comparison, all the baseline
accelerators are scaled to have the same clock frequency and
the same number of single precision MAC units as SCALE.
As FlowGNN utilizes a hybrid engine with node transform
units performing the update phase and message passing units
performing the aggregation phase, we use twice as many mes-
sage passing units as node transform units. Although GCNAX
and FlowGNN perform optimizations such as parallelization
strategies and loop fusion, they suffer from imbalanced work-
loads in their processing units when scaling up the number of
MAC units. Our reported latency of GCNAX and FlowGNN
accounts for this workload imbalance. Additionally, we have
scaled the bandwidth and on-chip memory to match SCALE.

VII. EVALUATION RESULTS

A. Performance Analysis

We configure SCALE as 32 × 16 PE array with a 4 MB
global buffer. Each PE has 6 KB local buffers (4 KB update
engine buffer and 2 KB aggregation engine buffer) and 2 MAC
units, so the total MAC units of SCALE is 1024. We utilize
the number of execution cycles as the performance metric.
Fig. 10 shows the speedup compared to other state-of-the-art
GCN and GNN accelerators. SCALE, on average, is 1.62×
and 2.01× faster than AWB-GCN and GCNAX for the GCN
model, respectively. For other models such as G-GCN, GS-
PL, and GIN, SCALE, on average, is 1.57× and 1.80× faster
than FlowGNN and ReGNN, respectively. The performance
improvement primarily stems from the balanced workload
with improved PE utilization and the coherent dataflow with
simplified communication patterns. As shown in Fig. 11, the

GCN
G-GCN

GS-PL GIN
0.0
0.5
1.0
1.5
2.0
2.5

No
rm

al
ize

d
Sp

ee
du

p Cora

GCN
G-GCN

GS-PL GIN

CiteSeer

GCN
G-GCN

GS-PL GIN

PubMed

GCN
G-GCN

GS-PL GIN

Nell

GCN
G-GCN

GS-PL GIN

Reddit
AWB-GCN GCNAX ReGNN FlowGNN SCALE

Figure 10: Normalized speedup comparison of AWB-GCN, GCNAX, ReGNN, FlowGNN, and SCALE for different datasets
and GNN models.

Cora CiteSeer PubMed Nell Reddit

Figure 11: Latency Breakdown.

exposed communication latency is reduced by up to 87.56% as
compared to baseline architectures. Next, we evenly distribute
the workload that considers both edge and vertex variations,
leading to better PE underutilization, which contributes up
to 50.35% latency reduction in both aggregation and update
phases. FlowGNN and GCNAX suffer from high workload
imbalance in the aggregation phase due to their fixed work-
load assignment strategy, which limits their performance. On
the other hand, although AWB-GCN mitigates the workload
balance issue, they do not pipeline both phases of GNN com-
putation. This comes with a considerable amount of redundant
memory accesses. ReGNN eliminates redundant computation,
but it employs disjoint engines for both phases and suffers
from workload imbalance in the aggregation phase.

Although SCALE shows considerable improvement over the
prior art for Cora, CiteSeer, PubMed, and Nell, its performance
is slightly worse than ReGNN on Reddit. The reason is two-
fold. First, Reddit graph dataset presents better regularity
in graph connectivity, in which edge and vertex degrees
show high similarity. Coupled with a low feature length,
Reddit inherently exhibits a balanced workload on baseline
accelerators. Additionally, Reddit has high graph-level data
reuse, in which a pair of vertices is connected to a set
of mutually shared vertices. Based on our dataset profiling,
75.5% of aggregation operations can be eliminated in Reddit.
As such, ReGNN, on the other hand, outperforms SCALE as
it primarily aims to minimize the large amount of redundant
computation in Reddit. However, it must be noted that such
redundancy removal techniques are orthogonal to SCALE.
To further understand the performance benefits of SCALE,
we implement the redundancy removal strategy to reprocess
the graph dataset, and Table. III shows that SCALE with
redundancy removal can outperform ReGNN by an average
of 1.23× on the Reddit dataset across different models.

Table III: Normalized speedup of SCALE with redundancy
removal compared to ReGNN.

Models
Datasets

Cora CiteSeer PubMed Nell Reddit

GCN 2.15 2.31 1.98 2.07 1.13
G-GCN 2.22 2.36 1.92 1.85 1.34

B. Scalability Analysis

To compare the scalability, we normalize the accelerator’s
speedup over AWB-GCN configured with 512 MACs. The
array dimensions of the PE array in our design are set as
16×16, 32×16, 32×32, and 64×32 for 512, 1K, 2K, and 4K
MACs, respectively. We prefer to increase the row dimension
rather than the column dimension, as increasing the column
dimension will lead to a larger shift register array. As shown in
Fig. 12, SCALE shows better scalability than prior accelerators
showing an average speedup of 12.07× compared to speed up
of 7.61×, 6.49×, 7.3×, and 6.68× for AWB-GCN, GCNAX,
ReGNN, and FlowGNN respectively when configured for
4K MACs. SCALE shows better scalability primarily due to
three reasons - a unified dataflow architecture, a balanced
workload, and simplified interconnects. To be specific, even
though AWB-GCN resolves the workload balance, it relies on
an all-to-all network to redirect computations to underutilized
computation resources. The disjoint aggregation and update
engines of all the prior works require a complicated network
to ensure data movement, which all suffer from bandwidth or
latency issues. SCALE eliminates the need for complicated
networks by having the proposed degree and vertex-aware
scheduling and coherent dataflow. Given this, SCALE shows
the best improvement for Nell, as it exhibits high irregularity
in the graph structure and large feature length exacerbating
workload imbalance in baseline accelerators. Even for such
irregular graphs, SCALE shows good workload balance and a
high degree of parallelism with a large accelerator size.

C. Workload Balance Analysis

To evaluate the proposed workload balancing techniques,
we analyze the PE utilization of SCALE and compare it
with the PE utilization of state-of-the-art GNN and GCN
accelerators, FlowGNN (FG) and AWB-GCN (AWB). Note
that all accelerators are configured with 1K MACs. We use
performance measurement counters to measure the active
cycles of the PEs during both the aggregation and update
phase of all the models and report the average utilization.

512 1K 2K 4K
0

5

10

15
No

rm
al

ize
d

Sp
ee

du
p

Cora

512 1K 2K 4K

CiteSeer

512 1K 2K 4K

PubMed

512 1K 2K 4K

Nell

512 1K 2K 4K

Reddit

AWB-GCN GCNAX ReGNN FlowGNN SCALE

Figure 12: Scalability comparison: Normalized speedup of AWB-GCN, GCNAX, ReGNN, FlowGNN, and SCALE for different
datasets with varying MAC units.

(a) (b)
Figure 13: (a) Average PE utilization of two phases with
different datasets and accelerators, and (b) ablation study of
scheduling policies.
Fig. 13(a) shows SCALE efficiently balances the workload
in both phases with an average PE utilization of 98.7% and
97.3% in aggregation and update, respectively. FlowGNN em-
ploys a scheduling similar to vertex-aware scheduling, which
shows an average PE utilization of 99.1% in the update phase
and 62.8% in the aggregation phase. AWB-GCN employs a
runtime workload balancing scheme to distribute the workload
evenly across the PEs, achieving a utilization close to SCALE
with a PE utilization of 86.4% for the aggregation phase
and 88.5% for the update phase on average. However, AWB-
GCN’s runtime balancing policy cannot be directly used for
other GNN models that cannot be represented as SpMM. In
contrast, SCALE, with the proposed scheduling, can balance
the workload in both phases.

D. Ablation Study of Scheduling Policy

We include an ablation study of various scheduling poli-
cies, such as degree-aware scheduling (S+DS), vertex-aware
scheduling (S+VS), and degree and vertex-aware scheduling
(S+DVS). Fig. 13(b) shows that S+DVS achieves high PE
utilization in both phases. On the other hand, S+DS has a
high utilization of 99.1% in the aggregation phase but a lower
utilization of 58.7% in the update phase. This is due to the even
distribution of edges, which results in a balanced workload
in the aggregation phase. S+VS has a high utilization of
99.2% in the update phase but a lower utilization of 54.7%
in the aggregation phase due to the uneven distribution of
edges. However, either scheduling is inefficient in balancing
the workload in both phases.

E. Sensitivity Study of Ring Size

To study the effects of varying ring sizes on performance,
we perform a sensitivity study in a 2-layer GCN model using
Cora and PubMed Datasets, where the scheduling policy is
consistent across all configurations. Fig. 14 shows that the
performance varies across datasets. For example, the first layer

(a) (b)
Figure 14: Performance comparisons with various ring sizes
when running 2-layer GCN with (a) Cora and (b) PubMed.

of the GCN model would prefer a ring size of 64. This is
because a small ring size may not be able to accommodate the
entire weight matrix, resulting in excessive off-chip memory
access. Conversely, a ring size that is too large may require
a longer initial data load time and could result in a less
balanced workload. For the second layer in Cora and PubMed
datasets, the dimension of the weight matrix is 16×7 and
16×3, respectively. In such a case, the update phase would
suffer from significant PE under-utilization because of the
small weight size. To solve this, we configure SCALE with
multiple small rings and duplicate the weight matrix, thereby
increasing spatial parallelism.

F. Task Scheduling Overhead Analysis

Fig. 16(a) shows the ratio of task scheduling latency (tts)
and task aggregation latency (tagg) for various batch sizes.
The task scheduling overhead is negligible when tts/tagg < 1
(TS-Negligible) and the bottleneck when tts/tagg > 1 (TS-
Bound). We observe that the aggregation engines transition
from TS-Bound to TS-Negligible as the batch size increases
and graphs with a low feature length or low average degree
require a larger batch size to cover the overhead. When batch
size is above 500, tts is smaller than tagg for all the datasets.

G. Energy and Area Analysis

Fig. 15 shows the energy breakdown of SCALE compared
to baselines normalized to AWB-GCN. SCALE reduces the
average DRAM and Global Buffer energy consumption by
36.8% and 53.2%, respectively.

The energy reduction results are from higher intermediate
data reuse at the register level, thereby reducing read/write
operations to Global Buffer and DRAM. This allows for
efficient usage of on-chip storage leading to higher input data
reuse. The intermediate data reuse will increase the number
of read/write at the register level in SCALE, as such it
exhibits a 5.72× Local Buffer energy consumption on average
as compared to prior works. Meanwhile, Reddit presents a

Cora CiteSeer PubMed Nell Reddit

Figure 15: Energy Breakdown.
large portion of mutually shared vertices, which translates to
a higher reduction in DRAM and Global Buffer access in
ReGNN. For Nell, with a large feature length, the benefits of
intermediate data reuse become more significant. Fig. 16(b)
shows the breakdown of the total die area of SCALE. Storage
components like Global Buffer and Local Buffer account for
81.4% of the total area, whereas the MACs and Task Control
occupy 12.2% and 6.4% of the total die area, respectively.

VIII. RELATED WORK

A. GCN Accelerators

GCN is one of the most prevalent GNN variants which
allows the application of convolutional layers directly on
graph-structured data. A variety of accelerators have been
developed to enhance GCN performance. For example, AWB-
GCN [2] employs a runtime workload rebalancing scheme to
redistribute uneven workload through an all-to-all network.
GCNAX [1] exploits loop fusion and reordering to unify the
computation characteristics of both GCN phases while reduc-
ing off-chip memory access. I-GCN [22] employs a breadth-
first search algorithm to extract dense matrix regions, thus im-
proving computation efficiency and data locality. GCoD [57]
decouples dense and sparse regions of the adjacency matrix
and accelerates them in different computing engines. RE-
FLIP [58] and PIM-GCN [59] accelerate GCN in the form of
matrix-vector multiplication in crossbar-based processing-in-
memory (PIM) architecture. However, prior research mostly
focuses on analog computing, and their proposed design is
unable to support complex GNN models with search and
comparison functions. Furthermore, these GCN accelerators
employ spatial or SIMD architectures adapting to graph irreg-
ularity, so intermediate and partial results are hardly reused at
the register level.

B. Graph Quantization, Sampling, and Pruning

To further enhance GNN model performance, various opti-
mization techniques have been proposed. DBQ [60] introduces
a degree-based quantization, in which only insensitive nodes
are quantized with low precision. MEGA [61] proposes a
mixed-precision quantization method depending on vertex’s
in-degree. GNNSampler [62] exploits the data locality among
nodes and their neighbors, eliminating irregular memory ac-
cess. DyGNN [63] proposes EdgePrune and VertexPrune to
eliminate redundant computations caused by message aggre-
gation. PruneGNN [64] develops a dimension-pruning-aware

Global Buffer

MAC Units

Task Control

46.5%

44.9%

12.2%

6.4%
MAC

TC

GLB

LB

Local Buffer
LB

GLB
TC

MAC

TS-Negligible
TS-Bound

(a) (b)
Figure 16: (a) Task scheduling overhead with different batch
sizes and (b) area breakdown.
sparse training method coupled with a SIMD-aware SpMM
kernel to exploit matrix-operator-level parallelism. It is evident
that all the quantization, sampling, and pruning optimizations
only optimize the graph data without changing the GNN oper-
ations. As such, these optimization techniques are orthogonal
to SCALE.

C. Sparse Tensor Algebra Accelerators

Given that the aggregation phase of several GNN models
can be abstracted as SpMM, several accelerator architec-
tures have been proposed to facilitate SpMM computations.
OuterSpace [65] proposes an outer product-based SpMM to
achieve higher input reuse compared to an inner product-
based method. ExTensor [66] proposes a novel approach to
eliminate all the unnecessary computations associated with
zero elements. SIGMA [67] adopts a Benes network to dy-
namically pair non-zero elements and distribute them to all the
multipliers. Flexagon [68] exploits a flexible dataflow design
for Sparse-Sparse Matrix Multiplication (SpMSpM) adapting
to various matrix dimensions. However, prior works typically
are inefficient in handling GNN models due to the following
issues. First, the mentioned sparse tensor accelerators typically
target SpMM or SpMSpM with lower sparsity, whereas graph
data exhibits a much higher sparsity ratio. In addition, the
intermediate data reuse is not considered in the sparse tensor
accelerators, as they are optimized only for SpMM, not for
chained reduce and matrix multiplications.

IX. CONCLUSION

In this paper, we propose an elastic accelerator, SCALE,
that can support a wide range of GNN models and graph
irregularities with much-improved performance and energy
efficiency. Specifically, SCALE consists of three designs, a
novel systolic array-like architecture, a degree and vertex-
aware scheduling, and a new dataflow tailored for fused
graph and neural operations. The proposed systolic array-like
architecture is robust to edge and vertex variations and can
accommodate edge, vertex, feature, and operator parallelism
simultaneously. The degree and vertex-aware scheduling can
alleviate the workload imbalance issues in the message aggre-
gation and vertex update phases. Additionally, the proposed
dataflow can unify the data movement of both graph and
neural operators without extra communication overheads. Our
simulation results show that SCALE achieves 1.82× speedup
with 38.9% energy reduction on average over the state-of-the-
art GNN accelerators.

REFERENCES

[1] Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. GC-
NAX: A flexible and energy-efficient accelerator for graph convolutional
neural networks. In Proceedings of IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 775–788.
IEEE, 2021.

[2] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei
Li, Pouya Haghi, Antonino Tumeo, Shuai Che, Steve Reinhardt, and
Martin C. Herbordt. AWB-GCN: A graph convolutional network
accelerator with runtime workload rebalancing. In Proceedings of
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 922–936. IEEE, 2020.

[3] Rishov Sarkar, Stefan Abi-Karam, Yuqi He, Lakshmi Sathidevi, and
Cong Hao. FlowGNN: A dataflow architecture for real-time workload-
agnostic graph neural network inference. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 1099–1112. IEEE, 2023.

[4] Cen Chen, Kenli Li, Yangfan Li, and Xiaofeng Zou. ReGNN: A
redundancy-eliminated graph neural networks accelerator. In Proceed-
ings of IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 429–443. IEEE, 2022.

[5] Zhiwei Guo and Heng Wang. A deep graph neural network-based
mechanism for social recommendations. In IEEE Transactions on
Industrial Informatics, pages 2776–2783, 2021.

[6] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: online
learning of social representations. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining
(KDD), pages 701–710. ACM, 2014.

[7] Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural
network based recommendation in social networks. In Neurocomputing,
page 126441. Elsevier, 2023.

[8] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. Graph convolutional neural networks
for web-scale recommender systems. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining
(KDD), pages 974–983. ACM, 2018.

[9] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph
neural networks in recommender systems: A survey. In ACM Computing
Surveys, pages 1–37. ACM, 2020.

[10] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole
Ai, Yong Li, and Jingren Zhou. AliGraph: A comprehensive graph
neural network platform. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD), pages
2094–2105. ACM, 2019.

[11] Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural
networks and their current applications in bioinformatics. In Frontiers
in Genetics, 2021.

[12] John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Au-
gustin Zı́dek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
A A Kohl, Andy Ballard, Andrew Cowie, Bernardino Romera-Paredes,
Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David A. Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger,
Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David
Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet
Kohli, and Demis Hassabis. Highly accurate protein structure prediction
with alphafold. In Nature, pages 583 – 589, 2021.

[13] Chuanze Kang, Han Zhang, Zhuo Liu, Shenwei Huang, and Yanbin
Yin. Lr-gnn: A graph neural network based on link representation for
predicting molecular associations. In Briefings in Bioinformatics, page
bbab513. Oxford University Press, 2022.

[14] Shilin Tian, Chase Szafranski, Ce Zheng, Fan Yao, Ahmed Louri, Chen
Chen, and Hao Zheng. Vita: Vit acceleration for efficient 3d human
mesh recovery via hardware-algorithm co-design. In Proceedings of
ACM/IEEE Design Automation Conference (DAC). IEEE, 2024.

[15] Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei, Dawen
Xu, and Xiaowei Li. EnGN: A high-throughput and energy-efficient
accelerator for large graph neural networks. In IEEE Transactions on
Computers, pages 1511–1525. IEEE, 2020.

[16] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong
Zhou, and Yafei Dai. NeuGraph: Parallel deep neural network compu-
tation on large graphs. In Proceedings of USENIX Annual Technical
Conference (USENIX ATC), pages 443–458. ACM, 2019.

[17] Adam Auten, Matthew Tomei, and Rakesh Kumar. Hardware acceler-
ation of graph neural networks. In Proceedings of ACM/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2020.

[18] Feng Shi, Ahren Yiqiao Jin, and Song-Chun Zhu. VersaGNN: a
versatile accelerator for graph neural networks. In arXiv preprint
arXiv:2105.01280, 2021.

[19] Zhuofu Tao, Chen Wu, Yuan Liang, Kun Wang, and Lei He. LW-GCN:
A lightweight fpga-based graph convolutional network accelerator. In
ACM Transactions on Reconfigurable Technology and Systems, pages
1–19. ACM, 2021.

[20] Lingxiang Yin, Jun Wang, and Hao Zheng. Exploring architecture,
dataflow, and sparsity for gcn accelerators: A holistic framework. In
Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI), pages
489–495. ACM, 2023.

[21] Sanjay Gandham, Lingxiang Yin, Hao Zheng, and Mingjie Lin. SAGA:
Sparsity-agnostic graph convolutional network acceleration with near-
optimal workload balance. In Proceedings of IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–9. IEEE,
2023.

[22] Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie,
Haoran You, Martin Herbordt, Yingyan Lin, and Ang Li. I-GCN: A
graph convolutional network accelerator with runtime locality enhance-
ment through islandization. In Proceedings of IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1051–1063. IEEE,
2021.

[23] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. In arXiv
preprint arXiv:1710.10903, 2017.

[24] Md Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad.
Fusedmm: A unified sddmm-spmm kernel for graph embedding and
graph neural networks. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 256–266. IEEE,
2021.

[25] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipour-
fard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram
Galstyan. Mixhop: Higher-order graph convolutional architectures
via sparsified neighborhood mixing. In Proceedings of International
Conference on Machine Learning (ICML), pages 21–29. PMLR, 2019.

[26] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In arXiv preprint arXiv:1609.02907,
2016.

[27] Xavier Bresson and Thomas Laurent. Residual gated graph convnets.
In arXiv preprint arXiv:1711.07553, 2017.

[28] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Proceedings of International Conference
on Neural Information Processing Systems (NIPS), pages 1025–1035.
ACM, 2017.

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How pow-
erful are graph neural networks? In arXiv preprint arXiv:1810.00826,
2018.

[30] Petar Veličković. Message passing all the way up. In arXiv preprint
arXiv:2202.11097, 2022.

[31] Kevin Kiningham, Philip Levis, and Christopher Ré. Grip: A graph
neural network accelerator architecture. In IEEE Transactions on
Computers, pages 914–925. IEEE, 2022.

[32] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu.
Graph neural networks for graphs with heterophily: A survey. In arXiv
preprint arXiv:2202.07082, 2022.

[33] Maciej Besta and Torsten Hoefler. Parallel and distributed graph neural
networks: An in-depth concurrency analysis. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 2584–2606. IEEE,
2024.

[34] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals,
and George E Dahl. Neural message passing for quantum chemistry. In
Proceedings of International Conference on Machine Learning-Volume
70 (ICML), pages 1263–1272. JMLR.org, 2017.

[35] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In arXiv preprint arXiv:1609.02907,
2017.

[36] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. Powergraph: Distributed graph-parallel computation
on natural graphs. In Proceedings of USENIX Conference on Operating
Systems Design and Implementation (OSDI), pages 17–30. ACM, 2012.

[37] Fangzhou Ye, Lingxiang Yin, Amir Ahsaei Ghazizadeh, and Hao Zheng.
Egma: Enhancing data reuse and workload balancing in message passing
gnn acceleration via gram matrix optimization. In Proceedings of
ACM/IEEE Design Automation Conference (DAC). IEEE, 2024.

[38] Duane Merrill and Michael Garland. Merge-based parallel sparse matrix-
vector multiplication. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
pages 678–689. IEEE, 2016.

[39] Abbas Karimi, Kiarash Aghakhani, Seyed Ehsan Manavi, Faraneh
Zarafshan, and SAR Al-Haddad. Introduction and analysis of optimal
routing algorithm in benes networks. In Procedia Computer Science,
pages 313–319. Elsevier, 2014.

[40] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun
Ye, Zhimin Zhang, Dongrui Fan, and Yuan Xie. HyGCN: A GCN ac-
celerator with hybrid architecture. In Proceedings of IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
15–29. IEEE, 2020.

[41] Hao Zheng, Ke Wang, and Ahmed Louri. Adapt-noc: A flexible
network-on-chip design for heterogeneous manycore architectures. In
Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 723–735. IEEE, 2021.

[42] Lingxiang Yin, Amir Ghazizadeh Ahsaei, Ahmed Louri, and Hao Zheng.
ARIES: Accelerating distributed training in chiplet-based systems via
flexible interconnects. In Proceedings of IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–9. IEEE,
2023.

[43] Murray Cole. Bringing skeletons out of the closet: a pragmatic manifesto
for skeletal parallel programming. Parallel computing, 30(3):389–406,
2004.

[44] Pengcheng Yao, Long Zheng, Yu Huang, Qinggang Wang, Chuangyi
Gui, Zhen Zeng, Xiaofei Liao, Hai Jin, and Jingling Xue. ScalaGraph:
A scalable accelerator for massively parallel graph processing. In
Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 199–212. IEEE, 2022.

[45] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
Gemini: A computation-centric distributed graph processing system. In
Proceedings of USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 301–316. ACM, 2016.

[46] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-
oung Choi. A scalable processing-in-memory accelerator for parallel
graph processing. In Proceedings of ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), pages 105–117. IEEE,
2015.

[47] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of
ACM Symposium on Operating Systems Principles (SOSP), pages 472–
488. IEEE, 2013.

[48] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun,
Yongpan Liu, Yu Wang, Yuan Xie, and Huazhong Yang. Graphh: A
processing-in-memory architecture for large-scale graph processing. In
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pages 640–653. IEEE, 2019.

[49] Andrea Lodi, Silvano Martello, and Daniele Vigo. Recent advances on
two-dimensional bin packing problems. In Discrete Applied Mathemat-
ics, pages 379–396, 2002.

[50] Tayo Oguntebi and Kunle Olukotun. GraphOps: A dataflow library for
graph analytics acceleration. In Proceedings of ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA). ACM,
2016.

[51] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman
Parashar, Vivek Sarkar, and Tushar Krishna. Understanding reuse,
performance, and hardware cost of DNN dataflow: A data-centric
approach. In Proceedings of IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 754–768. IEEE, 2018.

[52] Raveesh Garg, Eric Qin, Francisco Munoz-Mart’inez, Robert Guirado,
Akshay Jain, S. Abadal, Jos’e L. Abell’an, Manuel E. Acacio, Eduard
Alarc’on, Sivasankaran Rajamanickam, and Tushar Krishna. Under-
standing the design space of sparse/dense multiphase dataflows for
mapping graph neural networks on spatial accelerators. In Proceedings
of IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 571–582. IEEE, 2021.

[53] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and
extensible dram simulator. In IEEE Computer Architecture Letters, pages
45–49, 2016.

[54] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian
Galligher, and Tina Eliassi-Rad. Collective classification in network
data. In AI magazine, pages 93–93, 2008.

[55] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam
Hruschka, and Tom Mitchell. Toward an architecture for never-ending
language learning. In Proceedings of AAAI Conference on Artificial
Intelligence (AAAI), pages 1306–1313. AAAI Press, 2010.

[56] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P
Jouppi. CACTI 6.0: A tool to understand large caches. In University of
Utah and Hewlett Packard Laboratories, Technical Report, 2009.

[57] Haoran You, Tong Geng, Yongan Zhang, Ang Li, and Yingyan Lin.
Gcod: Graph convolutional network acceleration via dedicated algorithm
and accelerator co-design. In Proceedings of IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
460–474. IEEE, 2022.

[58] Yu Huang, Long Zheng, Pengcheng Yao, Qinggang Wang, Xiaofei
Liao, Hai Jin, and Jingling Xue. Accelerating graph convolutional
networks using crossbar-based processing-in-memory architectures. In
Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 1029–1042. IEEE, 2022.

[59] Nagadastagiri Challapalle, Karthik Swaminathan, Nandhini Chan-
dramoorthy, and Vijaykrishnan Narayanan. Crossbar based processing
in memory accelerator architecture for graph convolutional networks.
In Proceedings of IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pages 1–9. IEEE, 2021.

[60] Yilong Guo, Yuxuan Chen, Xiaofeng Zou, Xulei Yang, and Yuandong
Gu. Algorithms and architecture support of degree-based quantization
for graph neural networks. In Journal of Systems Architecture, page
102578. Elsevier, 2022.

[61] Zeyu Zhu, Fanrong Li, Gang Li, Zejian Liu, Zitao Mo, Qinghao
Hu, Xiaoyao Liang, and Jian Cheng. Mega: A memory-efficient gnn
accelerator exploiting degree-aware mixed-precision quantization. In
Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 124–138. IEEE, 2024.

[62] Xin Liu, Mingyu Yan, Shuhan Song, Zhengyang Lv, Wenming Li,
Guangyu Sun, Xiaochun Ye, and Dongrui Fan. Gnnsampler: Bridging
the gap between sampling algorithms of gnn and hardware. In Proceed-
ings of Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 498–514. Springer, 2022.

[63] Cen Chen, Kenli Li, Xiaofeng Zou, and Yangfan Li. Dygnn: Algorithm
and architecture support of dynamic pruning for graph neural networks.
In Proceedings of ACM/IEEE Design Automation Conference (DAC),
pages 1201–1206. IEEE, 2021.

[64] Deniz Gurevin, Mohsin Shan, Shaoyi Huang, MD Amit Hasan, Caiwen
Ding, and Omer Khan. Prunegnn: Algorithm-architecture pruning frame-
work for graph neural network acceleration. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 108–123. IEEE, 2024.

[65] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amar-
nath, Siying Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw,
Trevor Mudge, and Ronald Dreslinski. Outerspace: An outer product
based sparse matrix multiplication accelerator. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 724–736. IEEE, 2018.

[66] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago,
Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher.
Extensor: An accelerator for sparse tensor algebra. In Proceedings of
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 319–333. IEEE, 2019.

[67] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan
Srinivasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. SIGMA:
A sparse and irregular GEMM accelerator with flexible interconnects
for DNN training. In Proceedings of IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 58–70. IEEE,
2020.

[68] Francisco Muñoz-Martı́nez, Raveesh Garg, Michael Pellauer, José L
Abellán, Manuel E Acacio, and Tushar Krishna. Flexagon: A multi-
dataflow sparse-sparse matrix multiplication accelerator for efficient dnn
processing. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 252–265. ACM, 2023.

	Introduction
	Background and Motivation
	Graph Neural Networks
	Motivation

	Proposed Architecture Design
	Overall SCALE Architecture
	SCALE PE Array Architecture
	Aggregation Phase
	Update Phase
	Workload Imbalance and Ring Size

	Proposed Scheduling Policy
	Degree and Vertex-aware Scheduling
	Performance Model

	Proposed Dataflow and Mapping
	Experimental Setup
	Evaluation Results
	Performance Analysis
	Scalability Analysis
	Workload Balance Analysis
	Ablation Study of Scheduling Policy
	Sensitivity Study of Ring Size
	Task Scheduling Overhead Analysis
	Energy and Area Analysis

	Related Work
	GCN Accelerators
	Graph Quantization, Sampling, and Pruning
	Sparse Tensor Algebra Accelerators

	Conclusion
	References

