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Abstract

Sparse Matrix Dense Matrix Multiplication (SpMM) is a fundamen-
tal computation kernel across various domains, including scientific
computing, machine learning, and graph processing. Despite ex-
tensive research, existing approaches optimize SpMM using loop
transformations and linear algebra principles, which (1) poorly han-
dle unstructured sparsity patterns, (2) rely on empirical methods to
explore data reuse opportunities, and (3) enforce rigid coordinate
alignment, compromising data locality.

In this paper, we demonstrate that these limitations stem from
the fundamental matrix representation and traditional dataflows of
SpMM (e.g., inner-product, outer-product, and Gustavson). We pro-
pose Aquila, a graph transformation framework that reformulates
SpMM computations as a graph optimization problem, leveraging
graph theory to reinterpret tiling and dataflow. First, on the theo-
retical side, we introduce vertex decomposition and adaptive depth
traversal (ADT) to enable non-contiguous tiling, where nonzero
elements from discontinuous rows and columns are clustered by
connectivity rather than following matrix dimensionality. This ap-
proach quantifies data reuse and improves data locality beyond tra-
ditional loop transformations while maintaining output equivalence.
Second, on the algorithm side, we develop a pull-after-push (PaP)
dataflow that simultaneously enhances the dense matrix data reuse
while eliminating synchronization issues in output matrix accumu-
lation. Third, building on our theoretical approach and dataflow, we
present a versatile accelerator architecture that handles a variety
of SpMM kernels with diverse data sizes and sparsity patterns in a
unified architecture. Additionally, we introduce a bidirectional fiber
tree (BFT) format to support the proposed graph-oriented dataflow
in contrast to traditional column or row-major access. Evaluation
across diverse sparse datasets shows Aquila achieves speedups of
4.3%, 3.4%, 3.7, 2.9%, and 2.7X in execution time and up to 4.8X
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1 Introduction

Sparse Matrix Dense Matrix Multiplication (SpMM) is a critical com-
putation kernel in numerous domains such as machine learning and
scientific computing [2, 5, 6, 18, 20, 40-42, 45, 66]. For example, in
Graph Neural Networks [35], a sparse matrix is used to represent
the graph connectivity, with nonzero elements indicating connec-
tions between pairs of vertices [33, 58, 62]. While such sparse data
representation can be leveraged to eliminate unnecessary compu-
tations and reduce storage overheads, the irregular data patterns
pose challenges to data locality and computation regularity.

Prior work [1, 8, 57, 63, 64] has employed conventional loop
transformation techniques to optimize data reuse and parallelism
in SpMMs. However, these techniques rely on dense linear algebra,
which fails to accurately capture data reuse within unstructured
sparse patterns. For example, inner [21, 22, 47] and row-wise prod-
uct [34, 50, 67] (i.e., pull-based dataflow) have been used to improve
the data reuse of the output matrix, where multiple blocks of the
input matrix are simultaneously retrieved to generate a single block
of the output matrix. However, the data reuse for the dense in-
put matrix remains suboptimal because of the unstructured sparse
matrix. Additionally, accumulating partial results of the output ma-
trix imposes strict synchronization requirements. Outer-product
dataflow [44, 69] (i.e., push-based dataflow) enhances the data reuse
of input dense matrix but may reduce the reuse efficiency of the
output matrix. However, current dataflows cannot simultaneously
optimize data reuse of dense matrices while avoiding the synchro-
nization issue. This limitation is primarily due to the loop-based
representation of dataflows.

Moreover, significant research [3, 28, 32, 36, 61] aimed to regu-
larize the sparse matrices by leveraging matrix reordering or con-
densing nonzero elements. However, reordering the distribution of
nonzero elements in matrix representation has been proven to be
an NP-hard problem [3, 31], and the resulting solutions are specific
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Figure 1: Traditional matrix-based dataflows and their corresponding graph representations.

to a given sparsity pattern. In addition, while graph clustering algo-
rithms, such as I-GCN [15] and GCoD [65], can enhance the density
in specific matrix regions, efficient data reuse ultimately depends on
the tiling strategy and dataflow design. For example, several well-
known sparse matrix reordering algorithms, including RCM [37],
column approximate minimum degree ordering [9], graph islandiza-
tion [15], and column permutation based on nonzero counts [24],
are only applicable to a certain sparsity pattern or application. Con-
densing and repositioning nonzero elements [11, 68, 69] at runtime
can effectively balance the workload, but disrupting the coordinate
information can lead to irregular dependencies with prohibitive
synchronization overheads. Furthermore, adaptive tiling [34] is ef-
fective for balancing the quantity of nonzero elements across matrix
partitions, but varying matrix dimensions could in turn affect the
data locality of dense matrices.

In this paper, we argue that the fundamental issue of existing
SpMM optimizations results from their matrix representation. The
linear representation of SpMMs is theoretically ineffective in ana-
lyzing and identifying the optimal data reuse and parallelism op-
portunities. As opposed to matrix representation, our key idea is
to use graph representation to analyze the relationship between
nonzero elements rather than where they are indexed. Upon this
central idea, we propose a graph transformation framework for
designing efficient SpMM accelerators.

Specifically, this paper makes the following contributions:

e On the theory side, we repurpose graph transformation to
rethink matrix tiling and dataflow, wherein the SpMM kernel
is abstracted as a graph. We introduce vertex decomposition
and adaptive depth traversal, which permit non-contiguous
tiling, grouping nonzero elements from rows and columns
that are not consecutive in their indices. This serves as a
theoretical foundation to quantify and enhance inter- and
intra-tile data reuse while retaining the mathematical equiv-
alence to matrix representation.

e On the algorithm side, we propose a graph-oriented dataflow
to enhance data reuse. Specifically, we propose a parent-
and-child aggregation dataflow, resulting from the proposed
vertex decomposition, to increase the data reuse between
matrix partitions. Additionally, we propose a pull-after-push
dataflow, as opposed to the current push-based (outer-product)
or pull-based (inner and row-wise product) model, to in-
crease the data reuse of both input and output dense matri-
ces while avoiding the synchronization issue in partial sum
accumulation.

e On the architecture side, backed by our framework and
dataflow, we propose a versatile accelerator architecture that
can efficiently handle various SpMM kernels with varying

data sizes and sparsity patterns. Specifically, We introduce a
new sparse data compression format, bidirectional fiber tree
(BFT), to support graph-oriented dataflows, dedicated pro-
cessing logic to enable dynamic vertex decomposition and
adaptive depth traversal, and a unified architecture that de-
couples inter- and intra-tile computation into a child-parent

aggregator and customized processing element (PE) engine.
We conduct a detailed performance and energy evaluation through

simulation and show that the proposed accelerator achieves 4.3,
3.4X, 3.7X, 2.9%, and 2.7X reductions in execution time when com-
pared to state-of-the-art-accelerators, Sextans [49], SPADE [17],
HotTiles [16], ReGNN [7] and I-GCN [15], respectively. Aquila can
further achieve up to 4.8X improvements in energy efficiency.

2 Background and Motivation

2.1 SpMM Dataflows

There are several dataflow models to compute SpMM kernels [15, 21,
33, 38], each offering distinct tradeoffs based on sparsity structure
and reuse opportunities. Given a sparse matrix A € RN*K | a dense
matrix B € RK*M and the output C € RN*M  the kernel computes:
C = A x B. Following linear algebra principles, as illustrated in
Figure 1, loop reordering over (N, K, M) exposes different memory
access patterns and reuse behaviors depending on the sparsity
distribution and matrix dimensions.

For instance, as illustrated in Figure 1(a), Extensor [21] and
Sigma [47] adopt the inner-product dataflow to optimize SpMM
execution. Here, each output element C[n, m] is computed by tak-
ing the dot product between the n-th row of the sparse matrix A
and the m-th column of the dense matrix B. This loop structure
promotes temporal reuse of the output row C[n, :], which remains
local during the inner loop iteration. However, neither the sparse
matrix A nor the dense matrix B benefits from effective reuse. The
nonzero pattern of each row in A dictates which rows of B must be
fetched. Specifically, computing C[i, :] requires accessing B[k, :] for
every k where A[i, k] # 0. This access is row-specific and irregular,
preventing the reuse of B across iterations. As a result, B is reloaded
for each row of A, leading to O(N) redundant reads.

On the other hand, outer-product [43, 69] is adopted to max-
imize the reuse of the input matrix B. As shown in Figure 1(b),
the k-th column of A is broadcast across all rows of C, and multi-
plied with the k-th row of B to generate contributions to C. This
traversal exploits the temporal reuse of B[k,:] across all output
rows. However, it incurs a high cost in output accumulation: partial
sums for C[n, m] are generated out-of-order and must be buffered
or synchronized until all k contributions are complete. This places
significant pressure on the on-chip memory to retain large portions
of C throughout the computation.



Rethinking Tiling and Dataflow for SpMM Acceleration: A Graph Transformation Framework

Sextans Spade [N HotTiles B ReGNN [ I-GCN

Yy (%)
S

NB
o o

o

Reuse Efficienc

PAP (N=0.43M)  WIKI (N=1.79M) GAP (N=23.95M) RED (N=0.23M)
Figure 2: Data reuse of traditional SpMM accelerators.

Similarly, as shown in Figure 1(c), the row-based product (i.e.,
Gustavson) shares the inner-product’s goal of optimizing the reuse
of the output matrix C, but mitigates some of the inefficiencies in
accessing B. This dataflow processes A row by row: for each row
n, it iterates over nonzeros A[n, k], fetches the corresponding row
Blk,:], scales it by A[n, k], and accumulates the result into C[n, :].
While this improves access locality compared to inner-product,
the reuse of B remains limited due to irregular sparsity, and the
accumulation into C introduces synchronization overheads (e.g.,
multiple writes to the same row of C) when parallelized [25, 36].

2.2 Traditional Tiling Methods and Limitations

Tiling is a critical technique for organizing computation and mem-
ory access in SpMM to match the on-chip buffer capacity con-
straints. It partitions the sparse and dense matrices in the SpMM
kernel into manageable blocks to minimize redundant transfers and
enhance reuse. However, in SpMM, traditional tiling faces unique
challenges due to unstructured sparsity. Tiles with identical dimen-
sions can exhibit vastly different memory access patterns depending
on nonzero distribution, making workload scheduling and reuse dif-
ficult to model. The tiling strategy must therefore not only consider
matrix dimensions and buffer size, but also sparsity structure. That
is, the reuse potential lies in the relationships among nonzeros, not
merely where they are indexed. Traditional tiling methods ignore
this aspect, as they partition matrices into fixed rows and columns
based on consecutive index ranges.

Position-based tiling [21, 23, 29, 53] slices matrices into fixed
row or column blocks. While simple to implement, these tiles often
contain large regions of zeros, resulting in poor compute utilization
and wasted memory bandwidth when moved across the memory
hierarchy. Additionally, being agnostic to sparsity structure, tile
boundaries offer no guarantee about the locality or relevance of
nonzeros, leading to unpredictable and irregular accesses to dense
matrices B and C. Even worse, B and C must conform to the tile
dimensions of A, forcing entire rows or columns to be fetched
regardless of actual access pattern. This increases on-chip storage
demand and further complicates the exploitation of reuse in on-
chip buffers. Adaptive tiling methods [21, 23] attempt to balance
nonzeros across tiles but still operate on index-aligned regions,
resulting in irregular tile shapes, unpredictable reuse patterns, and
high control overhead. Consequently, large segments of B and C
are fetched speculatively without guaranteed reuse.

On the other hand, loop reordering faces two key limitations in
determining temporal reuse. First, due to uneven nonzero distri-
butions and varying tile sizes, measuring optimal reuse is difficult.
Second, loop-based SpMM dataflows inherently favor either pull
or push, preventing simultaneous reuse of both input and output
matrices. To study the interaction between tiling and dataflow, we
characterized dense matrix reuse across four scientific domains
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Figure 3: Graph interpretation of SpMM dataflows.

with diverse sparsity and dimensions. We measure how often rows
of B and C are reused after being fetched on-chip (tile size 64 X 64),
spanning five state-of-the-art SpMM accelerators. As shown in Fig-
ure 2, the average reuse is 39.9%, with up to ~ 92% of potential
reuse unexploited in some cases, underscoring the need for new
reuse-optimized execution strategies.

3 Graph Abstraction of SpMM kernels

Traditional matrix representations of SpMM impose a rigid struc-
ture on scheduling nonzero elements following row- or column-
wise coordinate traversal, where the sparsity patterns are over-
looked. Instead, we leverage a graph abstraction that preserves the
mathematical semantics of SpMM while exposing sparsity through
connectivity. As shown in Figure 3, we reinterpret the SpMM kernel
C = A X B as a directed graph G = (V,E), where each nonzero
entry A[n, k] # 0 is an edge from source vertex k to target vertex
n. Here, the column dimension K of A defines the source vertices
and aligns with the row indices of B, while the row dimension
N of A defines the target vertices and maps to the row indices of
C. The dense matrix B € RK*M assigns M-dimensional feature
vectors to source vertices, and the output C € RN*M aggregates
these features into target vertices via multiply-accumulate opera-
tions per edge. Pull-based dataflows [21, 46, 56] (inner-product and
row-wise) correspond to target nodes n pulling features B[k, :] via
incoming edges. Push-based dataflows [14, 15, 46] (outer-product)
correspond to source nodes k broadcasting B[k, :] along outgoing
edges to target nodes n.

However, source and target vertex counts determine dense ma-
trix storage requirements. When vertices span multiple partitions,
the corresponding dense matrix rows require multiple accesses. We
use two graph theory primitives for non-contiguous tiling: vertex
decomposition, which breaks high-degree vertices into lower-degree
ones (previewed in Figure 4(c)), and adaptive depth traversal (ADT),
which clusters highly connected vertices. The decomposed vertex
structure can reduce the K and N dimensions of the produced tiles
for dense matrices, whereas the adaptive depth traversal can cluster
nonzero elements within each row and column into a single tile,
improving the data reuse of each tile.

3.1 Non-contiguous Tiling

Matrix tiling partitions a large matrix to meet the limited storage
capacity. Current SpMM tiling techniques, such as nonzero based
scheduling and adaptive tiling [12, 23, 49], emphasize the quantity
of nonzero elements while neglecting their coordinate information.
This often incurs (1) increased on-chip storage demand for dense
and output matrices or (2) compromised data reuse due to the re-
dundant data fetches. For example, as shown in Figure 4(a) and (b),
if matrix A employs either row or column-wise tiling, the row or
column dimensions of matrices B and C must be adjusted accord-
ingly to ensure dimension matching. This results in compromised
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data reuse and increased on-chip storage demands. To address this
issue, we propose non-contiguous tiling that does not adhere to
strict row or column index ordering as shown in Figure 4(c).

3.1.1  Vertex Decomposition. A key challenge in SpMM is that rows
or columns with many nonzero elements (i.e., high-degree vertices
in the graph abstraction) skew both compute and memory usage:
the same row from the dense matrix B must be fetched repeatedly
to handle all associated nonzeros. To mitigate this, we first use
vertex decomposition to split any high-degree vertex v* with degree
deg(v*) > T into multiple child vertices N = [deg(v*)/T], each
inheriting a fraction of v*’s edges. Consequently, each child vertex
refers to the same row of B (via the parent’s coordinate) but can be
mapped to different tiles to avoid overwhelming a single tile.

The original vertex becomes a parent vertex, which later accu-
mulates outputs from its children. Figure 5(b) illustrates the result
of applying vertex decomposition to the input graph in Figure 5(a).
Vertices A, C, and E are decomposed into child vertices (e.g., A into
A1 and Ay), with each child assigned a subset of the original edges
according to the vertex loading order. For instance, edges from A
to E and A to F are assigned to Aj, while edges from A to G and
A to H are assigned to Ap. This transformation ensures that: (1)
all vertices have the degree at most T, enforcing an upper bound
on the number of nonzeros per row or column and thus regulariz-
ing sparsity, and (2) dense operand accesses can now be localized
and reused across subgraphs, since child vertices (which duplicate
the parent’s dense row of matrix B) may be mapped to different
tiles. Specifically, rows or columns with a high number of nonzeros,
which would otherwise be reused across too many tiles, are now
broken into predictable blocks that improve data locality.

Algorithm 1 illustrates the process of offloading edges from v*
to its children. To set T, we perform Deterministic Skip Sampling
(DSS) [54] with m = 1000 to estimate degree distributions within 3%
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Algorithm 1 Graph Vertex Decomposition

Input: Graph G(V,E), Threshold T
Output: Decomposed Graph G’ (V’, E’), list child-parent
1: function DEcomposEe(G, T)
2: Initialize children, keep, split, child_info
3 forv € Vdo
4 if DEGREES(v) > T then
5 neighbors <— GETNEIGHBORS(G, v)
6: keep, split «— SPLITNEIGHBORS (neighbors, T)
7
8
9.

EDGEOFFLOAD(G, v, keep)
children « CHILDDESCEND (v, split, T')
EpceLoap(child_info, children)

10: child-parent < CHILDDESCEND (o, children)
11: end if

12: end for

13: G’ < GraPHRECONSTRUCT(G(V, E), children)

14: return G’, child-parent

15: end function

error. We choose T so that the expected set of decomposed vertices
(and their partial results) meets the on-chip buffer capacity (which
will be discussed in the following section).

3.1.2  Quantifiable Data Reuse in Graph Abstraction: After decom-
position, we form non-contiguous tiles by grouping vertices that
maximize data reuse, independent of their original coordinate order.
In particular, we co-locate vertices that share common neighbors,
capturing reuse via two-hop pathways. When two vertices share
neighbor v, they both require access to row Blo, :] and contribute
to overlapping rows in C. Grouping such vertices into the same tile
allows reuse of both dense input and partial output data. We define
a reuse-maximization objective across all partitions p as:

P
maxz Z (degz(v)) (1)

i=0 veV}

Each term (degz(”)) quantifies reuse opportunities centered at
vertex v: unique vertex pairs in partition p that share v as a neighbor.
Placing such triplets, v and its neighbors into the same tile enables
both operands (i.e., matrix B rows) and outputs (i.e., rows of matrix
C) to be reused locally. For example, in Figure 5(b), vertices E and
F share neighbor Aj, forming a two-hop pathway suggesting these
vertices should be grouped to maximize data locality.

3.1.3 Adaptive Depth Traversal for Non-contiguous Tiling: To solve
this optimization problem while maintaining balanced partitions,
we introduce Adaptive Depth Traversal (ADT), a modified depth-
first search (DFS) traversal. ADT initiates multiple parallel traver-
sals from different starting points in the decomposed graph G’,
exploring each with limited depth D. This captures the benefits
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of DFS by including two-hop pathways while staying within local
neighborhoods like BFS. Unlike traditional DFS, ADT does not ex-
plore branches to their maximum depth but instead balances depth
exploration with breadth coverage. This strategy increases the like-
lihood of capturing connected communities within each subgraph,
where multiple vertices can share access to common neighbors,
translating to improved data locality in SpMM, where different
nonzeros access the same row of B. By limiting exploration depth
to parameter D (set similarly to threshold T from vertex decompo-
sition), we balance vertex and edge distribution across partitions.

3.1.4  Conflict Management. Implementing ADT requires adher-
ence to specific traversal rules to maximize reuse opportunities.
Beyond standard DFS backtracking, additional backtracking in-
stances, termed conflicts, may arise. Figure 5(c) illustrates how ADT
navigates a graph to achieve partitioning in the presence of these
conflicts. These conflicts include:

Exclusivity Conflict: The search hits a vertex already claimed
by another partition (backtrack case @ in Figure 5(c)), triggering a
backtrack to explore different branches. Sibling Conflict: A newly
visited child vertex such as Ay conflicts with its sibling (e.g., A1)
already in the same partition (backtrack case (). Since the sibling
already ensures the required row/column reuse, the traversal back-
tracks to another branch. Parent-Child Conflict: A parent vertex
C lands in the same partition as its child C; (backtrack case @)
To improve the vertex diversity and balance workload, either the
parent or child vertex is thus reassigned to a different partition.

3.1.5 Impact of Column Tiling on Off-chip Memory Access. In prac-
tice, the column dimension (M) of dense matrices B and C may
exceed on-chip buffer capacity, necessitating column-wise tiling.
Smaller M; values enable more vertices (rows from sparse matrix
A) to fit within on-chip buffers, enhancing vertex connectivity ex-
ploitation through ADT. However, this increases the number of
passes through sparse matrix A, as each pass processes only a frac-
tion of the output columns. Conversely, larger M; values reduce the
required passes through A but limit the number of vertices that can
be processed concurrently, constraining ADT’s ability to capture
graph connectivity patterns. To quantify this relationship, we ana-
lyze the buffer capacity constraint that determines the maximum
number of vertices |Vl;| that can reside on-chip within partition p:

Vol - My 24+ (2 |EP|+|ER]) s < Begp ®)
where factor 2 represents both dense input and output matrices
(B and C), 4 bytes represents the size of each 32-bit floating-point
element, s is the size in bytes for each nonzero element in the
sparse matrix, and Bcgp is the on-chip buffer capacity. Ef represents
internal edges (both endpoints in partition p), and Eﬁ represents
cut edges (one endpoint in partition p).
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After vertex decomposition, each vertex’s degree is bounded by
threshold T, and we let V’ and E denote the vertex and edge sets of
the transformed graph. The average degree is p/ = % Assuming

|Vp| vertices per partition and p total partitions, we estimate:

4 /.|P|_1

' 1
B~ V,|-p - —, Eb~|V,|-u 3)
r=re lpI” X Ipl
The factor I%I represents the probability that both endpoints of

an edge fall within the same partition, while Iplll;‘l indicates the

probability of an edge crossing partition boundaries as |p| increases.

Substituting these estimations into Equation 2 and solving for M;:
— |ymax'| . 1.

_Bcap |Vp |- p (1+|p|) S

’ (4)
|meax |-8

t

This equation reveals the inverse relationship between column
tile size M; and vertex capacity |me“x' |. To evaluate ADT’s effec-
tiveness in minimizing cross-partition edges, we define an edge
locality factor A, which represents the fraction of edges that cross
partition boundaries. Lower A values indicate better locality capture
by ADT, resulting in fewer redundant memory accesses. The total
data volume accessed from DRAM per SpMM operation can then
be expressed as:

M
Dtatal:8'|vl|'M+_'|E|'S-2-ﬂ (5)
M;

where the first term represents accesses to dense matrices B
and C, and the second term represents accesses to sparse matrix A,
adjusted by the ADT effectiveness factor. The A term reflects that
as external edged decrease, fewer redundant accesses are needed
across tiles.

3.1.6  Non-contiguous Tiling for Asymmetric Sparse Matrix. We use
an example to demonstrate the applicability of non-contiguous
tiling to the asymmetric sparse matrix as shown in Figure 6, where
vertex 4 connects to vertices 0 and 2. Vertex 4 pushes its feature
vector B[4,:] to both targets, which in turn pull and accumulate
these into C[0,:] and C[2,:], respectively. Asymmetric sparse ma-
trices can be formulated as directed graphs in our abstraction, with
K source and N target vertices could result in rectangular matri-
ces (N # K). Applying vertex decomposition and ADT can still
partition the rectangular matrices into different tiles.

4 Pull-after-Push Dataflow

The next challenge is to design a dataflow that supports such sparse
tiles and reframes the push-pull dichotomy to fully exploit the
reuse exposed by ADT. Conventional SpMM dataflows follow ei-
ther a Push (outer-product) or Pull (inner- and row-wise) execu-
tion model. Push emphasizes reuse of dense input matrix rows via
column-wise broadcasting but incurs scattered and uncoordinated
writes to the output. Pull improves locality for output writes but
suffers from poor reuse of dense inputs due to irregular sparsity.
To overcome these limitations, we propose a novel hybrid dataflow
named Pull-after-Push (PaP), integrating the complementary advan-
tages of PUSH and PULL paradigms. At its core, PaP exploits the
structural information exposed by our graph abstraction of a sparse
tile. PaP operates through a coordinated two-phase traversal.
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Figure 7: Proposed Pull-after-Push dataflow.

Push Phase (column-wise): Upon encountering a nonzero
element A[i, j], the dataflow retrieves the corresponding row B[, :
] from the dense matrix and multiplies it with all nonzeros in
column j of the sparse matrix. This operation efficiently exploits
the temporal reuse of B[j,:] across multiple multiplications and
distributes partial products to distinct output buffers, eliminating
write conflicts. This is shown in Figure 7.

Pull Phase (row-wise): After completing the column traversal,
PaP immediately transitions into the PULL phase, revisiting the first
nonzeros found on A’s j column, and horizontally processing the
remaining nonzeros along row i in A to finalize the accumulation
into output row C[i, :]. Such interleaved switching naturally cap-
tures both dense input and output reuse opportunities, efficiently
utilizing on-chip buffering for partial sums.

Unlike static, loop-oriented dataflows like inner-product, outer-
product, or row-wise schemes that commit to fixed traversal pat-
terns, PaP adapts dynamically to the unstructured state of sparsity.
The hybrid traversal allows each PE to exploit both dense matrix
row reuse (Push phase) and output row reuse (Pull phase) without
sacrificing either benefit, substantially reducing off-chip memory
access compared to pure Pull or Push implementations. For exam-
ple, figure 7 illustrates the PaP dataflow from a graph abstraction
perspective. Given nonzero entries {(0, 1), (0, 2), (1,0), (2,1)}, PaP
initiates with column 1 (PUSH), computing partial sums for rows
0 and 2. It then switches to row 0 (PULL), accumulates remaining
values, and proceeds dynamically, guided by graph connectivity.
This dynamic, graph-guided traversal ensures predictable reuse,
conflict-free execution, and efficient local buffer utilization, char-
acteristics unattainable with traditional matrix-centric dataflows.
This behavior holds within each tile, as decomposition and ADT
regularize the sparsity pattern.

Benefits: PaP’s adaptive traversal directly leverages graph struc-
ture to achieve (1) maximal reuse for dense rows of B (during the
Push phase), (2) reuse of output buffers (localized row-wise aggre-
gation during Pull phase), and (3) conflict-free writes to different
rows of C concurrently.

4.1 Bidirectional Fiber Tree (BFT) Format

Efficiently implementing PaP requires a sparse storage format capa-
ble of adaptive, bidirectional traversal along both rows and columns
simultaneously. Conventional formats, including CSR, CSC, and
traditional fiber trees, optimize data accesses strictly along a single
dimension—either rows or columns [51]. Such rigidity fundamen-
tally restricts the efficiency of PaP’s traversal. To overcome this
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Figure 8: An example of the proposed BFT format.

limitation, we introduce the Bidirectional Fiber Tree (BFT), a special-
ized compressed format explicitly designed for PaP’s simultaneous
multi-dimensional traversal.

As shown in Figure 8, the BFT format extends the fiber tree con-
cept by explicitly interleaving row and column indices, matching
PaP’s traversal semantics. Specifically, BFT begins traversal from
the first encountered nonzero (i, j) at rank-1 (column), branching
to rank-2 fibers (rows sharing the column index j) and subsequently
connecting to rank-3 fibers (columns sharing each row index i). This
hierarchical structure explicitly encodes both reuse opportunities
for dense input (column-centric) and output accumulation (row-
centric). In traditional fiber trees, rigidly traversing all nonzero
elements in an entire row or column could potentially affect the
spatial data locality. The proposed BFT format explicitly enables
bidirectional (row-to-column and column-to-row) and partial tra-
versal. In particular, fibers at rank 2 concentrate reuse opportunities
for matrix B (identical col_index), while fibers at rank 3 concen-
trate reuse opportunities for matrix C (identical row_index). As
illustrated in Figure 8(c), traditional fiber trees scatter these reuse
opportunities across separate fibers, whereas Figure 8(d) shows that
the BFT structure organizes reuse opportunities into single fibers
in a concentrated manner, significantly enhancing data locality and
reducing redundant memory accesses.

Overhead Analysis. The storage overhead and efficiency of the
compression format depend on the sparsity ratio and distribution.
BFT, similar to COQ, records the full set of coordinate information
of each nonzero element. However, BFT further reduces the storage
overheads of COO by encoding row and column indexes similar to
CSR and CSC. In the worst case scenario, when no nonzero elements
share the same column or column index, BFT incurs approximately
33% of storage overheads relative to CSR or CSC.

5 Agquila Accelerator

This section presents the accelerator design that enables our pro-
posed graph-based tiling and dataflow. We introduce a Non-Contiguous
Tiling (NCT) Engine that dynamically performs vertex decomposi-
tion followed by adaptive depth traversal (ADT) to generate non-
contiguous tiles at runtime. To support inter-tile accumulation
driven by dependencies in high-degree sparse rows, we design a
dedicated Child-Parent Aggregator unit. Finally, we introduce a
custom Processing Element (PE) microarchitecture that executes
the pull-after-push (PaP) dataflow directly over the BFT format,
enabling fine-grained reuse and conflict-free parallel execution.
Figure 9 presents the high-level architecture of Aquila, compris-
ing a Non-Contiguous Tiling (NCT) Engine, a Processing Element
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Figure 9: Overview of Aquila accelerator architecture.

(PE) Array, a Child-Parent Aggregator (CPA), and a unified Control
and Instruction Dispatch subsystem. The Global Buffer (GLB)
acts as an intermediary between off-chip DRAM and the on-chip
compute fabric, provisioning operands for both the sparse matrix
A and dense matrices B and C in the SpMM kernel. A crossbar in-
terconnect connects GLB to the PE array, enabling parallel operand
distribution. The Control Unit interfaces with the host through a
request dispatcher, which compiles high-level kernel invocations
into a sequence of micro-operations issued to the Instruction
Buffers. An Instruction Dispatcher coordinates the issue and
retirement of instructions across the NCT Engine and PE Array,
maintaining execution coherence.

At runtime, the NCT Engine streams subgraphs from the in-
put adjacency matrix into on-chip memory that fits within GLB
capacity. Each subgraph is transformed to mitigate irregularity
through vertex decomposition and partitioned via ADT, forming p
non-contiguous tiles matched to the number of available PEs. Once
the tiles are generated, they are dispatched to the PE array, where
each PE is assigned one tile for processing. While the PEs execute
the SpMM kernel over the current tile set using the PaP dataflow,
the NCT Engine concurrently begins processing the next subgraph
in a pipelined manner, ensuring sustained throughput. Operand
tiles are streamed from the GLB via a crossbar fabric, and partial
sums are locally accumulated in PE-side buffers. However, if a row
of the output matrix corresponds to a parent vertex that receives
partial contributions from multiple child vertices across different
tiles, final aggregation cannot occur within a single PE. In this case,
the PE forwards its partial result to the Child-Parent Aggregator
(CPA), which queues and accumulates these contributions using a
lightweight parent-child tracking table. Once all child contributions
have been received, the CPA finalizes the reduction and flushes the
result to DRAM.

This architecture enables decoupled execution of decomposi-
tion, computation, and aggregation. By pipelining tile generation
and SpMM execution, and offloading inter-tile reduction to the
CPA, Aquila eliminates global synchronization barriers, improves
PE utilization, and maximizes locality for both data and compute
across the irregular sparse computation. The Aquila accelerator
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Figure 10: Non-contiguous tiling (NCT) engine architecture.

utilizes a three-stage pipeline to maximize throughput. First, the
Non-Contiguous Tiling (NCT) Engine dynamically generates opti-
mized tiles at runtime using vertex decomposition and ADT. Next,
a parallel PE array processes these tiles, with each PE executing
the SpMM kernel using the efficient Pull-after-Push (PaP) dataflow.
A decoupled CPA then asynchronously finalizes results for decom-
posed vertices, avoiding synchronization stalls.

5.1 Non-contiguous Tiling (NCT) Engine

Facilitating the real-time execution of Vertex Decomposition fol-
lowed by ADT is essential to generate non-contiguous tiles in a
streaming manner. The engine is architected around four tightly
coupled units: (1) a Vertex Decomposition Unit that identifies and
splits high-degree vertices, (2) a Traversal Unit that performs bounded-
depth exploration to maximize local reuse, (3) a Conflict Man-
agement Unit that enforces partition correctness via fast exclu-
sion checks, and (4) a Vertex Assignment Unit that finalizes load-
balanced tile generation. All units operate in parallel over a streamed
graph representation of the sparse workload, ensuring minimal
stalls and consistent throughput, which is shown in Figure 10.

5.1.1 Vertex decomposition Unit: This unit traverses the SpMM
graph as described in Algorithm 1. The Graph Metadata, stored in
CSR format, is first streamed into multiple Input FIFOs. Vertices are
forwarded to the Degree Calculator module, which identifies parent
vertices whose degrees exceed threshold T. A multi-bank buffer
records their IDs, and the corresponding rows of matrix B—i.e., the
features of parent vertices—are placed in the Parent Vertex Buffer
in global memory. Since parent vertices are frequently accessed
across tiles, caching their features reduces off-chip memory traffic
during execution.
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Figure 11: Walkthrough example of the PaP dataflow and matrix traversal according to the BFT format.

As shown in Figure 10 (@), decomposed vertices are passed
to the Child Vertex Allocation module, which computes the num-
ber of child vertices required per parent based on edge count. The
Edge Index Calculator then redistributes excess edges from each
parent to its assigned children, as shown in (2). To manage depen-
dencies between child and parent vertices efficiently, we utilize a
lightweight Parent-Child Table. This table records each Vertex_ID
alongside its corresponding Parent_ID. This organized structure
ensures the accurate and efficient accumulation of partial results
for parent vertices whose accumulation workload is distributed
across child vertices.

5.1.2  Traversal Unit. The Traversal Unit implements the ADT algo-
rithm to construct reuse-aware partitions via bounded-depth explo-
ration. This unit dequeues vertices from Traversal LIFOs, populated
by the Graph Metadata Buffer. Each LIFO maintains depth via a
stack-like structure, with entries consisting of Vertex_ID, Parent_ID,
and current_H. The first two fields are 14 bits, supporting subgraphs
with up to 16,384 vertices; current_H is 4 bits, allowing traversal
depths up to 16. Empirically, SpMM-abstracted graphs in many
domains exhibit subgraph diameters rarely exceeding 5 [39, 52],
keeping traversal within this bound.

Each LIFO is assigned to a distinct graph partition. To initiate

traversal, it dispatches the top vertex to the Row_Ptr Fetcher, which
retrieves the start and end offsets for its adjacency list. The Neigh-
bor Loader then streams the neighbors and checks whether their
current_H exceeds the limit stored in the Hop Distance Register ®.
Vertices exceeding the limit are dropped. At @, valid neighbors
increment their current_H, are pushed back into the LIFO for con-
tinued traversal, and forwarded to the Exclusive Check FIFOs for
conflict handling before final partition assignment.
5.1.3  Conflict Management Unit: This unit enforces the conflict
rules described in Section 3.1.4. At @ each vertex ID is checked
against the Visited Vertex Buffer to ensure exclusivity within parti-
tions; duplicates are discarded, while valid entries proceed to the
Parent-Child Check FIFOs. At @ the unit checks for sibling and
parent-child conflicts by comparing a child’s Parent_ID with the
parent IDs in its partition’s Partition Buffer. Child vertices that share
a parent or sibling within the same partition are dropped.

5.1.4  Vertex Assignment Unit: At @, a capacity check verifies
whether the partition can accommodate the incoming vertex, using
limits defined in the Partition Capacity Register. Vertices that exceed
capacity are discarded; otherwise, they are added to the Partition

Buffer and logged in the Visited Vertex Buffer, where each entry uses
14 bits for the Vertex_ID. Once partitioning completes, all vertices
within a partition are mapped to a dedicated processing element.
Additionally, the NCT Engine Controller handles metadata requests
from the host and issues instructions from the Instruction Buffer,
configuring traversal parameters such as Hop Distance, Partition
Capacity, and transition logic. It also coordinates control signals
for multiplexers and manages FIFO load/store operations.

5.2 PE Microarchitecture for PaP Dataflow

Each Processing Element (PE) in Aquila is designed to natively
support the proposed Pull-after-Push (PaP) dataflow through a
hardware-software co-optimized microarchitecture. At the core of
this design is a dual-buffer interface, consisting of a Sparse Buffer
and a Dense Buffer, that respectively ingest the compressed sparse
tile (encoded in BFT format) and the corresponding dense matrix
rows. During the Push phase, the PE exploits reuse by multicasting
the nonzeros located in the same column of the sparse matrix to
a MAC array cascade, while spatially pinning the corresponding
dense row of matrix B across the MAC lanes. This spatial pinning
ensures that the dense row B[], :] is reused across multiple MAC
operations without reloading it from the buffer, as all nonzeros
Ali, j] sharing the same j index are consumed in a single phase.
This mode is highly effective at amortizing the cost of accessing B.

Upon completion of the column traversal, the PE transitions to
the Pull phase. Here, the PE reorients to a row-wise aggregation
model where it processes the partial sums corresponding to C[i,:].
These partial results, previously generated during the Push phase
and stored in the Partial Row (PR) buffer, are incrementally updated
as the PE traverses additional nonzero elements in the same row
of A (i.e., A[i,:]). This enables localized accumulation of output
values without global synchronization or redundant memory move-
ment. The bidirectional traversal logic in the PE is driven entirely
by the BFT-encoded coordinates, which expose both the vertical
and horizontal fiber views within a tile. Once a row’s aggregation
is finalized—either within the PE or across PEs via child-parent
reduction—the result is flushed to the output buffer or forwarded to
the CPA for final accumulation. Overall, the PE architecture allows
seamless integration of graph-abstracted reuse into dense compu-
tation pipelines, achieving high MAC utilization and minimizing
buffer pressure across a range of sparsity regimes.

Walkthrough Example: Figure 11 shows an 8-step execution
of the proposed PaP dataflow on a 1D MAC array of size 3. Step
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1 begins at coordinate (0,0) in the A tile. The nonzero at A[1,0]
triggers a push-style execution: the value is broadcast across the
MAC array, and B[1, :] elements are unicasted to compute C[1,:].
Steps 2 and 3 switch to pull-style. PaP searches for nonzeros in A
whose row indices match that of A[1, 0], enabling reuse of the active
output row C[1,:] to accumulate remaining partial sums. Step 4
returns to push-style to process A[0, 1], initiating computation of
C[o0, :] with B[1,:]. Steps 5 and 6 process A[2, 1] and A[3, 1], which
share the same column index as A[0, 1]. The dataflow reuses the
already loaded B[1,:] without re-fetch. Step 7 switches back to
pull-style. Starting from the last element in A[:, 1], it enables the
reuse of row C|[3 :]. Step 8 concludes the pull phase by consuming
remaining nonzeros in rows corresponding to previously active
column indices, finalizing the computation of partial sums in C.
The dataflow dynamically alternates between push and pull styles
to maximize reuse of both B and C operands.

5.3 Child-Parent Aggregator Unit

The Child-Parent Aggregator (CPA) is a specialized unit responsible
for accumulating partial sums from decomposed child vertices to
their corresponding parent vertices. As shown in Figure 9, this
decouples irregular inter-tile reductions from the PE datapath and
avoids cross-PE synchronization. During SpMM execution, each PE
processes a non-contiguous tile (subgraph). If a vertex is identified
as child within the PE logic, the partial output vector C; . is redi-
rected to the CPA unit rather than being finalized. The CPA receives
partial sums tagged with both the child and parent vertex IDs. It
uses the Parent-Child Table to aggregate all partial results corre-
sponding to a given parent vertex. These partial sums are buffered
in the Parent Buffer, which holds in-flight reductions. To track com-
pletion, each parent vertex is associated with a counter that reflects
the expected number of child contributions—determined statically
from the decomposition process. Upon receipt of each partial sum,
the CPA updates the accumulator entry and decrements the counter.
Once all children have reported their results, the final accumulated
output is flushed to the output buffer and written back to DRAM.
By offloading parent-child reductions to the CPA, Aquila allows
each PE to process tiles independently, alleviating the inter-PE
synchronization requirements. This avoids introducing irregular
accumulation logic within the PE datapath. Moreover, this design
ensures correctness in the presence of decomposed vertices, while
preserving scalability by bounding buffer requirements and track-
ing logic to only the subset of high-degree vertices identified during
tiling. However, the mixed row- and column-wise access patterns
of the PaP dataflow might lead to bank conflicts within the GLB. A
high-degree vertex needed by multiple PEs simultaneously could
cause bank conflicts, as concurrent requests to the same bank force
serialization, stalling PEs and reducing memory-level parallelism.
Aquila mitigates this through Vertex Decomposition, which splits
the workload of high-degree vertices into logical child vertices.
The ADT algorithm then assigns these children to non-contiguous
tiles mapped to different PEs, naturally spreading memory requests
across GLB banks and avoiding contention. During accumulation,
instead of multiple PEs issuing conflicting write operations to the
same bank in the GLB, each PE forwards its partial result to a dedi-
cated CPA unit. This shifts the many-to-one write-back bottleneck
into independent transfers handled asynchronously by the CPA.
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Table 1: Evaluated dataset properties

Dataset Dim.  Application Symm. NNZ E2v
Delaunay n24 (DELL) 16.78M  Numerical Simulations Yes 100.66M 6.0
wiki-topcats (WIKI) 1.79M  Wikipedia Hyperlinks No 28.51M 15.9
mycielskian17 (MYC) 0.10M  Graph Coloring Yes 100.25M  1023.0
Serena (SER) 139M  Geomechanical Modeling Yes 64.13M 46.1
coPapersCiteseer (PAP) 0.43M  Citation Co-authorship Yes 32.07M 73.9
GAP-road (GAP) 23.95M  Road Network Yes 57.71M 24
Reddit (RED) 0.23M  Social Media Yes 114.62M 492.8
PubMed (PMED) 0.02M  Citation Network Yes 0.09M 4.5
Minference 1.0 (MIN) 0.12M  Machine Learning No 1,638.4M 12,800
SeerAttention (SEE) 0.03M  Machine Learning No 122.88M 3,840

Offloading irregular accumulation preserves GLB bandwidth for
predictable operand fetches and maintains high throughput across
the PE array. Once all child contributions for a parent vertex are
received, the CPA performs a single final write to the output buffer,
minimizing GLB write traffic.

6 Evaluation

6.1 Simulation Setup

Configurations: Simulation Setup. We built a cycle-accurate
simulator for Aquila, following methodologies from prior work [34,
55,59]. The simulator integrates with Ramulator [30] to model HBM
with 256 GB/s bandwidth and captures the cycle-level behavior of
all compute and memory components. Aquila comprises 32 PEs,
each with a 4x8 FP32 MAC array (1K MACs total), operating at
1 GHz. The 1.25 MB global buffer includes 512 KB sparse, 512 KB
dense, and 256 KB auxiliary storage. Local PE buffers sum to 35 KB.
For ASIC evaluation, we synthesize in Verilog using TSMC 32nm
with Synopsys Design Compiler. Switching activity is captured via
waveform traces and analyzed using PrimeTime PX. On-chip buffer
energy and area are modeled with CACTI 7.0 [4].

Datasets. We evaluate Aquila using eight datasets spanning
numerical simulation (DEL, SER), network analysis (WIKI, PAP),
graph algorithms (GAP, MYC [10]), and GNN workloads (RED [19],
PMED [48]). These datasets vary in sparsity ratio (7.14 X 107° to
2.11 x 10~ %) and structure (i.e., symmetric and asymmetric), provid-
ing a broad benchmark suite. Further, to assess Aquila at moderate
sparsity (10%), we include two sparse matrices from intermediate
attention maps of SeerAttention [13] and MlInference [27] LLMs.
Dataset properties are summarized in Table 1.

Baseline Platforms: We evaluate Aquila against three state-
of-the-art SpMM accelerators—Sextans [49], SPADE [17], and HoT-
tiles [16], and two GNN accelerators, I-GCN [15] and ReGNN [7],
whose aggregation phases performs SpMM. To ensure fairness, we
isolate and simulate only the aggregation kernel for both GNN accel-
erators and match their architectural parameters with Aquila. For
I-GCN [15], we replicate the islandization mechanism for stream-
ing dense tiles and also replicate its redundancy elimination mech-
anism. For ReGNN, we implement the redundancy elimination
methodology [26]. For SpMM accelerators, Sextans utilizes out-of-
order scheduling within rows to balance workload, mitigate RAW
dependencies, and optimize pipeline utilization. SPADE implements
tile-based scheduling with barrier synchronization, and we repli-
cated its bypass buffers, which avoid cache interactions. HoTtiles ap-
plies an analytical model exploiting intra-matrix heterogeneity [16],
partitioning matrices into dense regions processed by compute-
intensive "Hot Workers" (analogous to Sextans’ PEs) and sparse
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Figure 12: Normalized speedup over Sextans with varying dense input matrix dimension (k) across datasets.
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Figure 13: Off-chip memory access normalized to Sextans.

regions handled by latency-tolerant "Cold Workers" (similar to
SPADE’s PEs). For a comprehensive comparison, Aquila’s evalua-
tion incorporates kernel execution along with host-to-device and
device-to-host memory transfer times. For a fair comparison, all
designs are scaled to a 1IK-MAC array organized into 32 PEs, run-
ning at a projected 1 GHz. The GLB size is uniformly set to 1.25 MB.
We also replicate the architecture and dataflow of the baselines as
described in their work.

6.2 Performance Analysis

Figure 12 presents the normalized speedup of Aquila and the base-
lines relative to Sextans across four feature dimensions: K € {32,
64,128, 256}. The results demonstrate Aquila’s consistent perfor-
mance advantages across diverse sparsity patterns. Averaged across
all datasets and dimensions, Aquila achieves 4.88x speedup. Aquila
exhibits improving relative performance as K increases. This trend
stems from Aquila’s core design principles: vertex decomposition
regularizes high-degree vertices that would otherwise create bottle-
necks at larger K, while ADT-generated non-contiguous tiles expose
reuse patterns that become more valuable as arithmetic intensity
rises. The PaP dataflow amplifies both B-row and C-row locality
simultaneously, allowing these reuse opportunities to effectively
amortize growing DRAM traffic. In contrast, coordinate-aligned
tiling schemes and rigid dataflows in prior work fail to capture such
reuse potential as K grows.

On GAP, Aquila demonstrates exceptional dominance with speedup.
growing from 18.3x at K = 32 to 33.5x at K = 256 over Sex-
tans. This low-density dataset challenges traditional approaches:
ReGNN’s redundancy elimination provides limited benefit when
edge density is insufficient for vertex clustering, while HotTiles’
heterogeneity-aware partitioning finds few dense regions to exploit.
Aquila’s vertex decomposition and ADT, however, discover and
co-locate reuse opportunities within sparse neighborhoods, main-
taining high utilization even in low-density regimes. Conversely,
on MYC, where higher connectivity enables more effective tradi-
tional optimizations, Aquila’s advantages are consistent: 3.2X to
5.4%x across K values. Here, I-GCN’s islandization and ReGNN’s
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Figure 14: Data Reuse Comparison of Aquila vs. prior works.

PAP WiKI RED
redundancy reduction gain traction due to abundant vertex connec-
tivity, yet Aquila’s unified approach to both input and output reuse
through PaP maintains superior performance. As K increases, the
reuse quantification in Equation 1 becomes more impactful, since
two-hop pathways expose greater data sharing opportunities. This
theoretical prediction aligns with the empirical observation that
Aquila’s relative advantage strengthens with feature dimension
growth, while matrix-centric approaches plateau or degrade.

6.3 Off-Chip Memory Access

Figure 13 shows normalized off-chip memory accesses across accel-
erators (normalized to Sextans). On average, among SpMM accel-
erators, Aquila reduces off-chip memory accesses by 3.23X%, 2.85X,
and 2.81x over Sextans, SPADE, and HotTiles, respectively. It also
outperforms ReGNN and I-GCN with 2.67x and 2.38X reductions.

In RED and PMED, Sextans, SPADE, and HotTiles incur higher
off-chip memory accesses, as techniques like NNZ scheduling, tile-
based strategies, and hot/cold region separation are less effective
on power-law sparse matrices like RED and PMED. ReGNN reduces
memory traffic by caching frequently shared vertex sets, common
in such graphs. I-GCN improves locality by colocating high-degree
vertices with its neighbors, mitigating irregular accesses. However,
GNN accelerators face limitations: in PAP and MYC, their off-chip
accesses exceed those of SpMM accelerators on average due to un-
predictable sparsity and corresponding access patterns. Although
prior work employs sophisticated tiling and scheduling, these tech-
niques react inconsistently to sparsity variations, yielding unstable
memory behavior. Aquila overcomes this by using a parent buffer
to cache high-degree vertices on-chip, consistently reducing off-
chip accesses—especially for vertices spanning multiple tiles, thus
improving memory efficiency across diverse datasets.

In addition, we tile the Cora graph [60] into 64 X 64 tiles. Fig-
ure 15(b) shows the share of ineffectual (all-zero) tiles after ver-
tex decomposition and ADT. Only 17 of ~ 3K vertices exceed the
degree threshold, so duplication overhead is <0.005%. ADT parti-
tions vertices by connectivity rather than coordinate order, forming
reuse-rich effectual tiles while isolating sparse, ineffectual ones for
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Figure 16: Average and range of the workload (sum of degree)
across partitions (PEs).

elimination. As a result, ~ 55% of tiles are ineffectual, far above
the 4.2% under conventional tiling [16, 17, 49] (Figure 15(a)). Fig-
ure 15(c) confirms the advantage across tile sizes, noting that larger
tiles naturally yield fewer fully ineffectual tiles due to decreased
sparsity granularity.

6.4 Data Reuse Analysis

We compute on-chip data reuse as the number of accesses per row
of the dense input (B) and output (C) matrices in SpMM before evic-
tion, expressed as a percentage of the theoretical reuse assuming
an unlimited GLB without tiling. As shown in Figure 14, Aquila
achieves 72.12% of theoretical reuse on average. It improves reuse
by 32.2% over prior work on average, outperforming HotTiles and
I-GCN by 31.8% and 29.9%, respectively. This stems from vertex de-
composition, which records parent and child reuse in different tiles;
adaptive depth traversal, which aligns NNZs across non-contiguous
tiles; and push-after-pull dataflow, which maximizes reuse within
each tile for both dense and output matrices.

6.5 Workload Balance

Figure 16 compares workload balance across datasets, focusing on
the distribution of NNZ elements per PE. Aquila demonstrates a
significantly more balanced degree distribution compared to Sex-
tans and I-GCN. While the mean degree per partition for Aquila
(1548.94) is similar to I-GCN (1544.00), its standard deviation is
much smaller at 105.44, compared to 175.51 for I-GCN and 336.87
for Sextans. This indicates that Aquila’s partition degrees are tightly
clustered around the mean, ensuring more uniformity. In contrast,
the higher standard deviations in Sextans and I-GCN reflect greater
variability, with some partitions having disproportionately high or
low workloads. Sextans lacks a mechanism to handle high-degree
vertices, making its workload balance highly dependent on the
graph’s degree distribution. I-GCN exacerbates this imbalance by
clustering high-degree vertices into a few partitions using a BFS
strategy, which creates dense regions while leaving other partitions
sparsely connected compared to early-forming partitions. Aquila’s
superior balance stems from its vertex decomposition strategy,
which resolves skewed degree distributions by ensuring vertices
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have equalized degrees regardless of partitioning, leading to better
workload balance.

6.6 Energy Efficiency

We compare the energy consumption of Aquila with Sextans and
I-GCN, two representative baselines, as shown in Figure 17. Across
all datasets, Aquila reduces energy consumption by an average of
60.5% and 55.7% when compared to Sextans and I-GCN, respec-
tively. The reduction is attributed to Aquila’s strategy of retaining
frequently accessed vertices in parent buffer, achieving an order-of-
magnitude reduction of off-chip memory access. Additionally, the
ADT algorithm increases the edge-to-vertex ratio per PE, ensuring
that neighboring vertices are often processed within the same PE,
thereby minimizing on-chip data movement. Moreover, distributing
child vertices across multiple PEs as replicas of frequently accessed
vertices significantly decreases global buffer access.

6.7 Preprocessing Analysis

To assess preprocessing overhead, Figure 18 (left) shows it accounts
for an average of 7.34% of total runtime across all datasets, demon-
strating the NCT engine’s efficiency in generating tiles before
SpMM execution. As density increases (e.g. in the MIN dataset
with 10% sparsity), preprocessing reaches 14.74%. The overhead
grows due to the longer traversal required for vertex decomposition
and ADT in denser matrices. Further, to analyze preprocessing over-
head across Vertex Decomposition, ADT, and Conflict Management
units, we use the Edge-to-Vertex (E2V) ratio as the key indicator,
as shown in Figure 18 (right). PMED, with a low E2V of 4.5, spends
16.7% of time on vertex decomposition, since few vertices exceed
the maximum degree threshold. In contrast, MIN’s extreme E2V
of 12,800 leads to 36.2% spent on decomposition, as more vertices
exceed the degree threshold, and 30.4% on conflict management
due to complex parent-child structures and denser connectivity.
SER, with a moderate E2V of 46.1, achieves balanced overhead
across phases thanks to its regular geometric structure. Overall,
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LLM workloads incur the highest preprocessing costs (~ 13%) due
to dense connectivity and SpMM kernels involving a graph (e.g.,
PMED) benefit from efficient traversal with minimal decomposition
due to their community-based structures.

6.8 Area Consumption Analysis

Figure 19 shows the area distribution of Aquila’s accelerator. The
global buffer accounts for 34.09% and the PE array uses 61.47% of
the total chip area. In contrast, the CPA and NCT engine together
occupy only about 2.82%, highlighting the minimal area overhead of
Aquila’s auxiliary hardware components. The detailed area break-
down for the PE is illustrated in Figure 19(a), where buffers consume
52.63% and MACs array uses 47.24% of the PE area. Additionally,
Figure 19(c) provides a breakdown of the NCT engine’s area. The
Conflict Management Unit dominates the NCT engine’s area, occu-
pying about 41.13%. This unit includes buffers and FIFOs to stage
vertex streams, handle potential conflicts during the ADT process,
and assign vertices to partitions.

6.9 Sensitivity, Scalability and Ablation Study

Sensitivity Study on GLB Size. Figure 21 shows how GLB size
scaling affects off-chip memory access across datasets. We observe
an inverse relationship between the density of the sparse matrix
and the benefit from GLB scaling: datasets with higher density
see less reductions in memory access as GLB size increases. For
example, RED, with a 492 edge to vertex (E2V) ratio, achieves 1 to
4.2x improvement when scaling GLB from 1MB to 8MB, whereas
GAP, the dataset with the largest dimension 23.95M and an E2V
ratio of 2.4, sees a 1 to 6.0 gain. This is because the less density of
this dataset reduces number of dependency between the partitions
(tiles) that should be loaded to the on-chip memory each time.
Scalability Study on PE Numbers. Figure 20 illustrates the
normalized speedup of four representative datasets when scaling
from 8 to 512 PEs in Aquila. The results demonstrate a correla-
tion between graph density and scalability. PAP, with the highest
edge-to-vertex ratio (E2V=73.9), achieves the best scaling with 20x
speedup at 512 PEs, while the sparse GAP dataset reaches only
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15X speedup. WIKI and SER datasets exhibit intermediate scaling
behavior proportional to their respective densities, with SER out-
performing WIKI across all PE configurations.

Ablation Study. We performed an ablation study to evaluate the
individual benefits of non-contiguous tiling and PaP dataflow, as
well as their combined effectiveness, measuring improvements over
a baseline implementation using simple index-based tiling with pull-
based dataflow, as shown in Figure 22. Our results demonstrate that
the combined approach achieves an average of 10.30x performance
improvement across all evaluated datasets, significantly outper-
forming tiling-only (5.58% average) and PaP-only (1.91X average)
implementations. The superior performance of PaP dataflow when
combined with non-contiguous tiling, compared to its standalone
application, stems from the increased tile density achieved through
non-contiguous tiling, as illustrated in Figure 16.

7 Conclusion

In this paper, we propose a set of algorithms built on top of a graph
abstraction framework to reengineer SpMM kernel execution. We
also introduce Aquila, a specialized accelerator that supports these
graph transformations in real time. Algorithmically, we reinterpret
SpMM tiling and reuse using its graph abstraction beyond tradi-
tional loop transformations. We propose a non-contiguous tiling
technique combined with a novel pull-after-push dataflow, which
enhances both temporal and spatial reuse across all matrices, elimi-
nates partial result accumulation and write conflicts, and ensures
balanced workloads. Architecturally, we design a Bidirectional Fiber
Tree format to match the access patterns of the pull-after-push
dataflow, replacing rigid row- or column-major dataflows. Built on
this foundation, Aquila supports diverse Sp)MM kernels with vary-
ing dimensions and sparsity patterns under a unified architecture.
Simulation results show that Aquila achieves average speedups of
4.3%, 3.4X%, 3.7X%, 2.9%, and 2.7X reductions in execution time and up
to 4.8X improvements in energy efficiency across multiple sparse
datasets, compared to state-of-the-art accelerators [7, 15-17, 49].
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